December  2015, 8(4): 667-684. doi: 10.3934/krm.2015.8.667

A free boundary problem for a class of parabolic type chemotaxis model

1. 

School of Mathematics and Statistics, Wuhan University, Computational Science Hubei Key Laboratory, Wuhan University, Wuhan, 430072, China, China, China

Received  February 2015 Revised  May 2015 Published  July 2015

In this paper, we study a free boundary problem for a class of parabolic type chemotaxis model in high dimensional symmetry domain $\Omega$. By using the contraction mapping principle and operator semigroup approach, we establish the existence of the solution for such kind of chemotaxis system in the domain $\Omega$ with free boundary condition.
Citation: Hua Chen, Wenbin Lv, Shaohua Wu. A free boundary problem for a class of parabolic type chemotaxis model. Kinetic & Related Models, 2015, 8 (4) : 667-684. doi: 10.3934/krm.2015.8.667
References:
[1]

H. Chen and S. H. Wu, On existence of solutions for some hyperbolic-parabolic-type chemotaxis systems,, IMA Journal of Applied Mathematics, 72 (2007), 331. doi: 10.1093/imamat/hxm008. Google Scholar

[2]

H. Chen and S. H. Wu, The free boundary problem in biological phenomena,, Journal of Partial Differential Equations, 20 (2007), 155. Google Scholar

[3]

H. Chen and S. H. Wu, Hyperbolic-parabolic chemotaxis system with nonlinear product terms,, Journal of Partial Differential Equations, 21 (2008), 45. Google Scholar

[4]

H. Chen and S. H. Wu, Nonlinear hyperbolic-parabolic system modeling some biological phenomena,, Journal of Partial Differential Equations, 24 (2011), 1. Google Scholar

[5]

H. Chen and S. H. Wu, The moving the moving boundary problem in a chemotaxis model,, Communications on Pure and Applied Analysis, 11 (2012), 735. doi: 10.3934/cpaa.2012.11.735. Google Scholar

[6]

H. Chen and X. H. Zhong, Norm behaviour of solutions to a parabolic-elliptic system modelling chemotaxis in a domain of $\mathbbR^3$,, Mathematical Methods in the Applied Sciences, 27 (2004), 991. doi: 10.1002/mma.479. Google Scholar

[7]

H. Chen and X. H. Zhong, Global existence and blow-up for the solutions to nonlinear parabolic-elliptic system modelling chemotaxis,, IMA Journal of Applied Mathematics, 70 (2005), 221. doi: 10.1093/imamat/hxh032. Google Scholar

[8]

H. Chen and X. H. Zhong, Existence and stability of steady solutions to nonlinear parabolic-elliptic systems modelling chemotaxis,, Mathematische Nachrichten, 279 (2006), 1441. doi: 10.1002/mana.200310430. Google Scholar

[9]

A. Friedman, Free boundary problems in science and technology,, Notices of the American Mathematical Society, 47 (2000), 854. Google Scholar

[10]

H. Gajewski and K. Zacharias, Global behavior of a reaction-diffusion system modelling chemotaxis,, Mathematische Nachrichten, 195 (1998), 77. doi: 10.1002/mana.19981950106. Google Scholar

[11]

T. Hillen and K. J. Painter, A user's guide to pde models for chemotaxis,, Journal of Mathematical Biology, 58 (2009), 183. doi: 10.1007/s00285-008-0201-3. Google Scholar

[12]

D. Horstmann, From 1970 until present: The keller-segel model in chemotaxis and its consequences I,, Jahresbericht der Deutschen Mathematiker Vereinigung, 105 (2003), 103. Google Scholar

[13]

D. Horstmann and G. F. Wang, Blow-up in a chemotaxis model without symmetry assumptions,, European Journal of Applied Mathematics, 12 (2001), 159. doi: 10.1017/S0956792501004363. Google Scholar

[14]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability,, Journal of Theoretical Biology, 26 (1970), 399. doi: 10.1016/0022-5193(70)90092-5. Google Scholar

[15]

T. Nagai, Blow-up of radially symmetric solutions to a chemotaxis system,, Advances in Mathematical Sciences and Applications, 5 (1995), 581. Google Scholar

[16]

K. Osaki and A. Yagi, Finite dimensional attractors for one-dimensional keller-segel equations,, Funkcialaj Ekvacioj-Serio Internacia, 44 (2001), 441. Google Scholar

[17]

K. B. Raper, Dictyostelium discoideum, a new species of slime mold from decaying forest leaves,, Journal of Agricultural Research, 50 (1935), 135. Google Scholar

[18]

T. Suzuki, Free Energy and Self-Interacting Particles,, Birkhäuser, (2005). doi: 10.1007/0-8176-4436-9. Google Scholar

[19]

T. Senba and T. Suzuki, Parabolic system of chemotaxis: Blowup in a finite and the infinite time,, Methods and Applications of Analysis, 8 (2001), 349. Google Scholar

[20]

T. Senba, T. Nagai and K. Yoshida, Application of the trudinger-moser inequality to a parabolic system of chemotaxis,, Funkcialaj Ekvacioj-Serio Internacia, 40 (1997), 411. Google Scholar

[21]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional keller-segel model,, Journal of Differential Equations, 248 (2010), 2889. doi: 10.1016/j.jde.2010.02.008. Google Scholar

[22]

M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic keller-segel system,, Journal de Mathématiques Pures et Appliquées, 100 (2013), 748. doi: 10.1016/j.matpur.2013.01.020. Google Scholar

[23]

S. H. Wu, H. Chen and W. X. Li, The local and global existence of the solutions of hyperbolic-parabolic system modeling biological phenomena,, Acta Mathematica Scientia, 28 (2008), 101. doi: 10.1016/S0252-9602(08)60011-9. Google Scholar

[24]

S. H. Wu, A free boundary problem for a chemotaxis system,, Acta Mathematica Sinica. Chinese Series, 53 (2010), 515. Google Scholar

[25]

S. H. Wu and B. Yue, On existence of local solutions of a moving boundary problem modelling chemotaxis in 1-D,, Journal of Partial Differential Equations, 27 (2014), 268. Google Scholar

[26]

Y. Yang, H. Chen, W. A. Liu and B. Sleeman, The solvability of some chemotaxis systems,, Journal of Differential Equations, 212 (2005), 432. doi: 10.1016/j.jde.2005.01.002. Google Scholar

show all references

References:
[1]

H. Chen and S. H. Wu, On existence of solutions for some hyperbolic-parabolic-type chemotaxis systems,, IMA Journal of Applied Mathematics, 72 (2007), 331. doi: 10.1093/imamat/hxm008. Google Scholar

[2]

H. Chen and S. H. Wu, The free boundary problem in biological phenomena,, Journal of Partial Differential Equations, 20 (2007), 155. Google Scholar

[3]

H. Chen and S. H. Wu, Hyperbolic-parabolic chemotaxis system with nonlinear product terms,, Journal of Partial Differential Equations, 21 (2008), 45. Google Scholar

[4]

H. Chen and S. H. Wu, Nonlinear hyperbolic-parabolic system modeling some biological phenomena,, Journal of Partial Differential Equations, 24 (2011), 1. Google Scholar

[5]

H. Chen and S. H. Wu, The moving the moving boundary problem in a chemotaxis model,, Communications on Pure and Applied Analysis, 11 (2012), 735. doi: 10.3934/cpaa.2012.11.735. Google Scholar

[6]

H. Chen and X. H. Zhong, Norm behaviour of solutions to a parabolic-elliptic system modelling chemotaxis in a domain of $\mathbbR^3$,, Mathematical Methods in the Applied Sciences, 27 (2004), 991. doi: 10.1002/mma.479. Google Scholar

[7]

H. Chen and X. H. Zhong, Global existence and blow-up for the solutions to nonlinear parabolic-elliptic system modelling chemotaxis,, IMA Journal of Applied Mathematics, 70 (2005), 221. doi: 10.1093/imamat/hxh032. Google Scholar

[8]

H. Chen and X. H. Zhong, Existence and stability of steady solutions to nonlinear parabolic-elliptic systems modelling chemotaxis,, Mathematische Nachrichten, 279 (2006), 1441. doi: 10.1002/mana.200310430. Google Scholar

[9]

A. Friedman, Free boundary problems in science and technology,, Notices of the American Mathematical Society, 47 (2000), 854. Google Scholar

[10]

H. Gajewski and K. Zacharias, Global behavior of a reaction-diffusion system modelling chemotaxis,, Mathematische Nachrichten, 195 (1998), 77. doi: 10.1002/mana.19981950106. Google Scholar

[11]

T. Hillen and K. J. Painter, A user's guide to pde models for chemotaxis,, Journal of Mathematical Biology, 58 (2009), 183. doi: 10.1007/s00285-008-0201-3. Google Scholar

[12]

D. Horstmann, From 1970 until present: The keller-segel model in chemotaxis and its consequences I,, Jahresbericht der Deutschen Mathematiker Vereinigung, 105 (2003), 103. Google Scholar

[13]

D. Horstmann and G. F. Wang, Blow-up in a chemotaxis model without symmetry assumptions,, European Journal of Applied Mathematics, 12 (2001), 159. doi: 10.1017/S0956792501004363. Google Scholar

[14]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability,, Journal of Theoretical Biology, 26 (1970), 399. doi: 10.1016/0022-5193(70)90092-5. Google Scholar

[15]

T. Nagai, Blow-up of radially symmetric solutions to a chemotaxis system,, Advances in Mathematical Sciences and Applications, 5 (1995), 581. Google Scholar

[16]

K. Osaki and A. Yagi, Finite dimensional attractors for one-dimensional keller-segel equations,, Funkcialaj Ekvacioj-Serio Internacia, 44 (2001), 441. Google Scholar

[17]

K. B. Raper, Dictyostelium discoideum, a new species of slime mold from decaying forest leaves,, Journal of Agricultural Research, 50 (1935), 135. Google Scholar

[18]

T. Suzuki, Free Energy and Self-Interacting Particles,, Birkhäuser, (2005). doi: 10.1007/0-8176-4436-9. Google Scholar

[19]

T. Senba and T. Suzuki, Parabolic system of chemotaxis: Blowup in a finite and the infinite time,, Methods and Applications of Analysis, 8 (2001), 349. Google Scholar

[20]

T. Senba, T. Nagai and K. Yoshida, Application of the trudinger-moser inequality to a parabolic system of chemotaxis,, Funkcialaj Ekvacioj-Serio Internacia, 40 (1997), 411. Google Scholar

[21]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional keller-segel model,, Journal of Differential Equations, 248 (2010), 2889. doi: 10.1016/j.jde.2010.02.008. Google Scholar

[22]

M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic keller-segel system,, Journal de Mathématiques Pures et Appliquées, 100 (2013), 748. doi: 10.1016/j.matpur.2013.01.020. Google Scholar

[23]

S. H. Wu, H. Chen and W. X. Li, The local and global existence of the solutions of hyperbolic-parabolic system modeling biological phenomena,, Acta Mathematica Scientia, 28 (2008), 101. doi: 10.1016/S0252-9602(08)60011-9. Google Scholar

[24]

S. H. Wu, A free boundary problem for a chemotaxis system,, Acta Mathematica Sinica. Chinese Series, 53 (2010), 515. Google Scholar

[25]

S. H. Wu and B. Yue, On existence of local solutions of a moving boundary problem modelling chemotaxis in 1-D,, Journal of Partial Differential Equations, 27 (2014), 268. Google Scholar

[26]

Y. Yang, H. Chen, W. A. Liu and B. Sleeman, The solvability of some chemotaxis systems,, Journal of Differential Equations, 212 (2005), 432. doi: 10.1016/j.jde.2005.01.002. Google Scholar

[1]

Toyohiko Aiki. On the existence of a weak solution to a free boundary problem for a model of a shape memory alloy spring. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 1-13. doi: 10.3934/dcdss.2012.5.1

[2]

Zhenhua Guo, Zilai Li. Global existence of weak solution to the free boundary problem for compressible Navier-Stokes. Kinetic & Related Models, 2016, 9 (1) : 75-103. doi: 10.3934/krm.2016.9.75

[3]

Hua Chen, Wenbin Lv, Shaohua Wu. A free boundary problem for a class of parabolic-elliptic type chemotaxis model. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2577-2592. doi: 10.3934/cpaa.2018122

[4]

Chengxia Lei, Yihong Du. Asymptotic profile of the solution to a free boundary problem arising in a shifting climate model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 895-911. doi: 10.3934/dcdsb.2017045

[5]

Xiaofeng Ren. Shell structure as solution to a free boundary problem from block copolymer morphology. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 979-1003. doi: 10.3934/dcds.2009.24.979

[6]

Harunori Monobe, Hirokazu Ninomiya. Multiple existence of traveling waves of a free boundary problem describing cell motility. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 789-799. doi: 10.3934/dcdsb.2014.19.789

[7]

Piotr Kowalski. The existence of a solution for Dirichlet boundary value problem for a Duffing type differential inclusion. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2569-2580. doi: 10.3934/dcdsb.2014.19.2569

[8]

Hua Chen, Shaohua Wu. The moving boundary problem in a chemotaxis model. Communications on Pure & Applied Analysis, 2012, 11 (2) : 735-746. doi: 10.3934/cpaa.2012.11.735

[9]

Toyohiko Aiki. A free boundary problem for an elastic material. Conference Publications, 2007, 2007 (Special) : 10-17. doi: 10.3934/proc.2007.2007.10

[10]

J. F. Padial. Existence and estimate of the location of the free-boundary for a non local inverse elliptic-parabolic problem arising in nuclear fusion. Conference Publications, 2011, 2011 (Special) : 1176-1185. doi: 10.3934/proc.2011.2011.1176

[11]

Juan Dávila, Louis Dupaigne, Marcelo Montenegro. The extremal solution of a boundary reaction problem. Communications on Pure & Applied Analysis, 2008, 7 (4) : 795-817. doi: 10.3934/cpaa.2008.7.795

[12]

Hayk Mikayelyan, Henrik Shahgholian. Convexity of the free boundary for an exterior free boundary problem involving the perimeter. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1431-1443. doi: 10.3934/cpaa.2013.12.1431

[13]

Tong Li, Anthony Suen. Existence of intermediate weak solution to the equations of multi-dimensional chemotaxis systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 861-875. doi: 10.3934/dcds.2016.36.861

[14]

Tong Yang, Fahuai Yi. Global existence and uniqueness for a hyperbolic system with free boundary. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 763-780. doi: 10.3934/dcds.2001.7.763

[15]

Xiaoshan Chen, Fahuai Yi. Free boundary problem of Barenblatt equation in stochastic control. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1421-1434. doi: 10.3934/dcdsb.2016003

[16]

Naoki Sato, Toyohiko Aiki, Yusuke Murase, Ken Shirakawa. A one dimensional free boundary problem for adsorption phenomena. Networks & Heterogeneous Media, 2014, 9 (4) : 655-668. doi: 10.3934/nhm.2014.9.655

[17]

Yongzhi Xu. A free boundary problem model of ductal carcinoma in situ. Discrete & Continuous Dynamical Systems - B, 2004, 4 (1) : 337-348. doi: 10.3934/dcdsb.2004.4.337

[18]

Anna Lisa Amadori. Contour enhancement via a singular free boundary problem. Conference Publications, 2007, 2007 (Special) : 44-53. doi: 10.3934/proc.2007.2007.44

[19]

Shihe Xu. Analysis of a delayed free boundary problem for tumor growth. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 293-308. doi: 10.3934/dcdsb.2011.15.293

[20]

Hiroshi Matsuzawa. A free boundary problem for the Fisher-KPP equation with a given moving boundary. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1821-1852. doi: 10.3934/cpaa.2018087

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]