-
Previous Article
An asymptotic-preserving scheme for the semiconductor Boltzmann equation with two-scale collisions: A splitting approach
- KRM Home
- This Issue
-
Next Article
Strong continuity for the 2D Euler equations
Energy dissipation for weak solutions of incompressible liquid crystal flows
1. | School of Mathematical Sciences, Xiamen University, Xiamen, 361005, China |
2. | School of Mathematical Sciences and Fujian Provincial Key Laboratory, on Mathematical Modeling and Scientific Computing, Xiamen University, Xiamen, 361005 |
References:
[1] |
P. Constain, E. Weinan and E. S. Titi, Onsager's conjecture on the energy conservation for solutions of Euler's equation, Commun. Math. Phys., 165 (1994), 207-209.
doi: 10.1007/BF02099744. |
[2] |
L. Caffarelli, R. Kohn and L. Nirenberg, Partial regularity of suitable weak solutions of the navier-stokes equations, Comm. Pure. Appl. Math., 35 (1982), 771-831.
doi: 10.1002/cpa.3160350604. |
[3] |
C. Cavaterra, E. Rocca and H. Wu, Global weak solution and blow-up criterion of the general Ericksen-Leslie system for nematic liquid crystal flows, J. Differential Equations, 255 (2013), 24-57, arXiv:1212.0043.
doi: 10.1016/j.jde.2013.03.009. |
[4] |
J. Duchon and R. Robert, Inertial energy dissipation for weak solutions of incompressible Euler and Navier-Stokes equations, Nonlinearity, 13 (2000), 249-255.
doi: 10.1088/0951-7715/13/1/312. |
[5] |
P. D. Gennes and J. Prost, The Physics of Liquid Crystals, $2^{nd}$ edition, International Series of Monographs on Physics No 83, (1993)
doi: 10.1080/13583149408628646. |
[6] |
S. Ding, J. Lin and H. Wen, Compressible hydrodynamic flow of liquid crystals in 1-D, Discrete Contin. Dyn. Syst., 32 (2012), 539-563.
doi: 10.3934/dcds.2012.32.539. |
[7] |
J. L. Ericksen, Hydrostatic theory of liquid crystals, Arch. Ration. Mech. Anal., 9 (1962), 371-378. |
[8] |
G. L. Eyink, Energy dissipation without viscosity in ideal hydrodynamics. I. Fourier analysis and local energy transfer, Physica, 78 (1994), 222-240.
doi: 10.1016/0167-2789(94)90117-1. |
[9] |
Z. S. Gao, Z. Tan and G. C. Wu, Energy dissipation for weak solutions of incompressible MHD equations, Acta Mathematica Scientia, 33 (2013), 865-671.
doi: 10.1016/S0252-9602(13)60046-6. |
[10] |
M. C. Hong, Global existence of solutions of the simplified Ericksen-Leslie system in dimension two, Calc Var Partial Differential Equations, 40 (2011), 15-36.
doi: 10.1007/s00526-010-0331-5. |
[11] |
M. C. Hong and Z. P. Xin, Global existence of solutions of the liquid crystal flow for the Oseen-Frank model in $\mathbb{R}^2$, Adv. Math., 231 (2012), 1364-1400.
doi: 10.1016/j.aim.2012.06.009. |
[12] |
J. R. Huang, F. H. Lin and C. Y. Wang, Regularity and existence of global solutions to the Ericksen-Leslie system in $\mathbb{R}^2$, Adv. Math., 331 (2012), 805-850.
doi: 10.1007/s00220-014-2079-9. |
[13] |
F. Jiang, S. Jiang and D. H. Wang, Global weak solutions to the equations of compressible flow of nematic liquid crystals in Two Dimensions, Arch. Ration. Mech. Anal., 214 (2014), 403-451.
doi: 10.1007/s00205-014-0768-3. |
[14] |
F. Jiang, S. Jiang and D. H. Wang, On multi-dimensional compressible flows of nematic liquid crystals with large initial energy in a bounded domain, J. Funct. Anal., 265 (2013), 3369-3397.
doi: 10.1016/j.jfa.2013.07.026. |
[15] |
F. Jiang and Z. Tan, Global weak solution to the flow of liquid crystals system, Math Methods Aool. Sci., 32 (2009), 2243-2266.
doi: 10.1002/mma.1132. |
[16] |
F. M. Leslie, Some constitutive equations for liquid crystals, Arch. Ration. Mech. Anal., 28 (1968), 265-283.
doi: 10.1007/BF00251810. |
[17] |
J. K. Li and Z. P. Xin, Global Weak Solutions to Non-isothermal Nematic Liquid Crystals in 2D, arXiv:1307.2065. |
[18] |
J. Leray, Etude de diverses équations intégrals nonlinéaires et de quelques problèmes que pose l'hydrodynamique, J. Math. Pures. Appl., 28 (1933), 1-82. |
[19] |
J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace. (French), Acta. Math., 63 (1934), 193-248.
doi: 10.1007/BF02547354. |
[20] |
F. H. Lin, Nonlinear theory of defects in nematic liquid crystals; phase transition and flow phenomena, Commun Pure Appl. Math., 42 (1989), 789-814.
doi: 10.1002/cpa.3160420605. |
[21] |
F. H. Lin and C. Liu, Partial regularity of the dynamic system modeling the flow of liquid crystals, Discrete Contin. Dyn. Syst., 2 (1996), 1-22. |
[22] |
F. H. Lin and C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals, CPAM, 48 (1995), 501-537.
doi: 10.1002/cpa.3160480503. |
[23] |
F. H. Lin and C. Liu, Existence of solutions for the Ericksen-Leslie system, Arch. Ration. Mech. Anal., 154 (2000), 135-156.
doi: 10.1007/s002050000102. |
[24] |
C. Liu and J. Shen, On liquid crystal flows with free-slip boundary conditions, Discrete Contin. Dynam. Systems, 7 (2001), 307-318.
doi: 10.3934/dcds.2001.7.307. |
[25] |
F. H. Lin, J. Y. Lin and C. Y. Wang, Liquid crystal flows in two dimensions, Arch. Ration. Mech. Anal., 197 (2010), 297-336.
doi: 10.1007/s00205-009-0278-x. |
[26] |
F. H. Lin and C. Y. Wang, Global existence of weak solutions of the nematic liquid crystal flow in dimensions three, Communications on Pure and Applied Mathematics, arXiv:1408.4146.
doi: 10.1002/cpa.21583. |
[27] |
F. H. Lin and C. Y. Wang, On the uniqueness of heat flow of harmonic maps and hydrodynamic flow of nematic liquid crystals, Chin. Ann. Math, 31 (2010), 921-938.
doi: 10.1007/s11401-010-0612-5. |
[28] |
Z. Lei, D. Li and X. Y. Zhang, Remarks of global wellposedness of liquid crystal flows and heat flows of harmonic maps in two dimensions, Proc. Amer. Math. Soc., 142 (2014), 3801-3810.
doi: 10.1090/S0002-9939-2014-12057-0. |
[29] |
L. Onsager, Statistical hydrodynamics, Nuovo Cimento (Supplemento), 6 (1949), 279-287. |
[30] |
H. Sun and C. Liu, On energetic variational approaches in modeling the nematic liquid crystal flows, Discrete Contin. Dynam. Systems, 23 (2009), 455-475.
doi: 10.3934/dcds.2009.23.455. |
[31] |
R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, Studies in Mathematics and its Applications, 2, North Holland, Amsterdam, 1979. |
[32] |
D. H. Wang and C. Yu, Global weak solution and large-time behavior for the compressible flow of liquid crystals, Arch. Ration. Mech. Anal., 204 (2012), 881-915.
doi: 10.1007/s00205-011-0488-x. |
[33] |
W. D. Wang and M. Wang, Global existence of weak solution for the 2-D Ericksen-Leslie system, Calc. Var. Partial Differential Equations, 51 (2014), 915-962.
doi: 10.1007/s00526-013-0700-y. |
[34] |
X. Xu and Z. F. Zhang, Global regularity and uniqueness of weak solution for the 2-D liquid crystal flows, J. Differ. Equ., 252 (2012), 1169-1181.
doi: 10.1016/j.jde.2011.08.028. |
show all references
References:
[1] |
P. Constain, E. Weinan and E. S. Titi, Onsager's conjecture on the energy conservation for solutions of Euler's equation, Commun. Math. Phys., 165 (1994), 207-209.
doi: 10.1007/BF02099744. |
[2] |
L. Caffarelli, R. Kohn and L. Nirenberg, Partial regularity of suitable weak solutions of the navier-stokes equations, Comm. Pure. Appl. Math., 35 (1982), 771-831.
doi: 10.1002/cpa.3160350604. |
[3] |
C. Cavaterra, E. Rocca and H. Wu, Global weak solution and blow-up criterion of the general Ericksen-Leslie system for nematic liquid crystal flows, J. Differential Equations, 255 (2013), 24-57, arXiv:1212.0043.
doi: 10.1016/j.jde.2013.03.009. |
[4] |
J. Duchon and R. Robert, Inertial energy dissipation for weak solutions of incompressible Euler and Navier-Stokes equations, Nonlinearity, 13 (2000), 249-255.
doi: 10.1088/0951-7715/13/1/312. |
[5] |
P. D. Gennes and J. Prost, The Physics of Liquid Crystals, $2^{nd}$ edition, International Series of Monographs on Physics No 83, (1993)
doi: 10.1080/13583149408628646. |
[6] |
S. Ding, J. Lin and H. Wen, Compressible hydrodynamic flow of liquid crystals in 1-D, Discrete Contin. Dyn. Syst., 32 (2012), 539-563.
doi: 10.3934/dcds.2012.32.539. |
[7] |
J. L. Ericksen, Hydrostatic theory of liquid crystals, Arch. Ration. Mech. Anal., 9 (1962), 371-378. |
[8] |
G. L. Eyink, Energy dissipation without viscosity in ideal hydrodynamics. I. Fourier analysis and local energy transfer, Physica, 78 (1994), 222-240.
doi: 10.1016/0167-2789(94)90117-1. |
[9] |
Z. S. Gao, Z. Tan and G. C. Wu, Energy dissipation for weak solutions of incompressible MHD equations, Acta Mathematica Scientia, 33 (2013), 865-671.
doi: 10.1016/S0252-9602(13)60046-6. |
[10] |
M. C. Hong, Global existence of solutions of the simplified Ericksen-Leslie system in dimension two, Calc Var Partial Differential Equations, 40 (2011), 15-36.
doi: 10.1007/s00526-010-0331-5. |
[11] |
M. C. Hong and Z. P. Xin, Global existence of solutions of the liquid crystal flow for the Oseen-Frank model in $\mathbb{R}^2$, Adv. Math., 231 (2012), 1364-1400.
doi: 10.1016/j.aim.2012.06.009. |
[12] |
J. R. Huang, F. H. Lin and C. Y. Wang, Regularity and existence of global solutions to the Ericksen-Leslie system in $\mathbb{R}^2$, Adv. Math., 331 (2012), 805-850.
doi: 10.1007/s00220-014-2079-9. |
[13] |
F. Jiang, S. Jiang and D. H. Wang, Global weak solutions to the equations of compressible flow of nematic liquid crystals in Two Dimensions, Arch. Ration. Mech. Anal., 214 (2014), 403-451.
doi: 10.1007/s00205-014-0768-3. |
[14] |
F. Jiang, S. Jiang and D. H. Wang, On multi-dimensional compressible flows of nematic liquid crystals with large initial energy in a bounded domain, J. Funct. Anal., 265 (2013), 3369-3397.
doi: 10.1016/j.jfa.2013.07.026. |
[15] |
F. Jiang and Z. Tan, Global weak solution to the flow of liquid crystals system, Math Methods Aool. Sci., 32 (2009), 2243-2266.
doi: 10.1002/mma.1132. |
[16] |
F. M. Leslie, Some constitutive equations for liquid crystals, Arch. Ration. Mech. Anal., 28 (1968), 265-283.
doi: 10.1007/BF00251810. |
[17] |
J. K. Li and Z. P. Xin, Global Weak Solutions to Non-isothermal Nematic Liquid Crystals in 2D, arXiv:1307.2065. |
[18] |
J. Leray, Etude de diverses équations intégrals nonlinéaires et de quelques problèmes que pose l'hydrodynamique, J. Math. Pures. Appl., 28 (1933), 1-82. |
[19] |
J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace. (French), Acta. Math., 63 (1934), 193-248.
doi: 10.1007/BF02547354. |
[20] |
F. H. Lin, Nonlinear theory of defects in nematic liquid crystals; phase transition and flow phenomena, Commun Pure Appl. Math., 42 (1989), 789-814.
doi: 10.1002/cpa.3160420605. |
[21] |
F. H. Lin and C. Liu, Partial regularity of the dynamic system modeling the flow of liquid crystals, Discrete Contin. Dyn. Syst., 2 (1996), 1-22. |
[22] |
F. H. Lin and C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals, CPAM, 48 (1995), 501-537.
doi: 10.1002/cpa.3160480503. |
[23] |
F. H. Lin and C. Liu, Existence of solutions for the Ericksen-Leslie system, Arch. Ration. Mech. Anal., 154 (2000), 135-156.
doi: 10.1007/s002050000102. |
[24] |
C. Liu and J. Shen, On liquid crystal flows with free-slip boundary conditions, Discrete Contin. Dynam. Systems, 7 (2001), 307-318.
doi: 10.3934/dcds.2001.7.307. |
[25] |
F. H. Lin, J. Y. Lin and C. Y. Wang, Liquid crystal flows in two dimensions, Arch. Ration. Mech. Anal., 197 (2010), 297-336.
doi: 10.1007/s00205-009-0278-x. |
[26] |
F. H. Lin and C. Y. Wang, Global existence of weak solutions of the nematic liquid crystal flow in dimensions three, Communications on Pure and Applied Mathematics, arXiv:1408.4146.
doi: 10.1002/cpa.21583. |
[27] |
F. H. Lin and C. Y. Wang, On the uniqueness of heat flow of harmonic maps and hydrodynamic flow of nematic liquid crystals, Chin. Ann. Math, 31 (2010), 921-938.
doi: 10.1007/s11401-010-0612-5. |
[28] |
Z. Lei, D. Li and X. Y. Zhang, Remarks of global wellposedness of liquid crystal flows and heat flows of harmonic maps in two dimensions, Proc. Amer. Math. Soc., 142 (2014), 3801-3810.
doi: 10.1090/S0002-9939-2014-12057-0. |
[29] |
L. Onsager, Statistical hydrodynamics, Nuovo Cimento (Supplemento), 6 (1949), 279-287. |
[30] |
H. Sun and C. Liu, On energetic variational approaches in modeling the nematic liquid crystal flows, Discrete Contin. Dynam. Systems, 23 (2009), 455-475.
doi: 10.3934/dcds.2009.23.455. |
[31] |
R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, Studies in Mathematics and its Applications, 2, North Holland, Amsterdam, 1979. |
[32] |
D. H. Wang and C. Yu, Global weak solution and large-time behavior for the compressible flow of liquid crystals, Arch. Ration. Mech. Anal., 204 (2012), 881-915.
doi: 10.1007/s00205-011-0488-x. |
[33] |
W. D. Wang and M. Wang, Global existence of weak solution for the 2-D Ericksen-Leslie system, Calc. Var. Partial Differential Equations, 51 (2014), 915-962.
doi: 10.1007/s00526-013-0700-y. |
[34] |
X. Xu and Z. F. Zhang, Global regularity and uniqueness of weak solution for the 2-D liquid crystal flows, J. Differ. Equ., 252 (2012), 1169-1181.
doi: 10.1016/j.jde.2011.08.028. |
[1] |
Xiaoli Li. Global strong solution for the incompressible flow of liquid crystals with vacuum in dimension two. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 4907-4922. doi: 10.3934/dcds.2017211 |
[2] |
Geng Chen, Ping Zhang, Yuxi Zheng. Energy conservative solutions to a nonlinear wave system of nematic liquid crystals. Communications on Pure and Applied Analysis, 2013, 12 (3) : 1445-1468. doi: 10.3934/cpaa.2013.12.1445 |
[3] |
Kyungkeun Kang, Jinhae Park. Partial regularity of minimum energy configurations in ferroelectric liquid crystals. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1499-1511. doi: 10.3934/dcds.2013.33.1499 |
[4] |
Shijin Ding, Changyou Wang, Huanyao Wen. Weak solution to compressible hydrodynamic flow of liquid crystals in dimension one. Discrete and Continuous Dynamical Systems - B, 2011, 15 (2) : 357-371. doi: 10.3934/dcdsb.2011.15.357 |
[5] |
Yuming Chu, Yihang Hao, Xiangao Liu. Global weak solutions to a general liquid crystals system. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 2681-2710. doi: 10.3934/dcds.2013.33.2681 |
[6] |
Chun Liu. Dynamic theory for incompressible Smectic-A liquid crystals: Existence and regularity. Discrete and Continuous Dynamical Systems, 2000, 6 (3) : 591-608. doi: 10.3934/dcds.2000.6.591 |
[7] |
Xian-Gao Liu, Jianzhong Min, Kui Wang, Xiaotao Zhang. Serrin's regularity results for the incompressible liquid crystals system. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5579-5594. doi: 10.3934/dcds.2016045 |
[8] |
Xian-Gao Liu, Jie Qing. Globally weak solutions to the flow of compressible liquid crystals system. Discrete and Continuous Dynamical Systems, 2013, 33 (2) : 757-788. doi: 10.3934/dcds.2013.33.757 |
[9] |
Jaeyoung Byeon, Sungwon Cho, Junsang Park. On the location of a peak point of a least energy solution for Hénon equation. Discrete and Continuous Dynamical Systems, 2011, 30 (4) : 1055-1081. doi: 10.3934/dcds.2011.30.1055 |
[10] |
Moez Daoulatli, Irena Lasiecka, Daniel Toundykov. Uniform energy decay for a wave equation with partially supported nonlinear boundary dissipation without growth restrictions. Discrete and Continuous Dynamical Systems - S, 2009, 2 (1) : 67-94. doi: 10.3934/dcdss.2009.2.67 |
[11] |
Jun Zhou. Global existence and energy decay estimate of solutions for a class of nonlinear higher-order wave equation with general nonlinear dissipation and source term. Discrete and Continuous Dynamical Systems - S, 2017, 10 (5) : 1175-1185. doi: 10.3934/dcdss.2017064 |
[12] |
Qunyi Bie, Haibo Cui, Qiru Wang, Zheng-An Yao. Incompressible limit for the compressible flow of liquid crystals in $ L^p$ type critical Besov spaces. Discrete and Continuous Dynamical Systems, 2018, 38 (6) : 2879-2910. doi: 10.3934/dcds.2018124 |
[13] |
Henri Schurz. Dissipation of mean energy of discretized linear oscillators under random perturbations. Conference Publications, 2005, 2005 (Special) : 778-783. doi: 10.3934/proc.2005.2005.778 |
[14] |
Dong Li, Chaoyu Quan, Jiao Xu. Energy-dissipation for time-fractional phase-field equations. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2022104 |
[15] |
Futoshi Takahashi. On the number of maximum points of least energy solution to a two-dimensional Hénon equation with large exponent. Communications on Pure and Applied Analysis, 2013, 12 (3) : 1237-1241. doi: 10.3934/cpaa.2013.12.1237 |
[16] |
Daomin Cao, Hang Li. High energy solutions of the Choquard equation. Discrete and Continuous Dynamical Systems, 2018, 38 (6) : 3023-3032. doi: 10.3934/dcds.2018129 |
[17] |
Kazumasa Fujiwara, Shuji Machihara, Tohru Ozawa. Remark on a semirelativistic equation in the energy space. Conference Publications, 2015, 2015 (special) : 473-478. doi: 10.3934/proc.2015.0473 |
[18] |
Wenya Ma, Yihang Hao, Xiangao Liu. Shape optimization in compressible liquid crystals. Communications on Pure and Applied Analysis, 2015, 14 (5) : 1623-1639. doi: 10.3934/cpaa.2015.14.1623 |
[19] |
Hongyu Ye. Positive high energy solution for Kirchhoff equation in $\mathbb{R}^{3}$ with superlinear nonlinearities via Nehari-Pohožaev manifold. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3857-3877. doi: 10.3934/dcds.2015.35.3857 |
[20] |
Danping Ding, Lixin Tian, Gang Xu. The study on solutions to Camassa-Holm equation with weak dissipation. Communications on Pure and Applied Analysis, 2006, 5 (3) : 483-492. doi: 10.3934/cpaa.2006.5.483 |
2021 Impact Factor: 1.398
Tools
Metrics
Other articles
by authors
[Back to Top]