December  2015, 8(4): 707-723. doi: 10.3934/krm.2015.8.707

An asymptotic-preserving scheme for the semiconductor Boltzmann equation with two-scale collisions: A splitting approach

1. 

Department of Mathematics, Purdue University, 150 N. University St., West Lafayette, IN 47907, United States

2. 

Department of Mathematics, University of Wisconsin-Madison, 480 Lincoln Drive, Madison, WI 53706

3. 

Department of Mathematics, University of California, Los Angeles, 520 Portola Plaza, Los Angeles, CA 90095, United States

Received  August 2014 Revised  April 2015 Published  July 2015

We present a new asymptotic-preserving scheme for the semiconductor Boltzmann equation with two-scale collisions --- a leading-order elastic collision together with a lower-order interparticle collision. When the mean free path is small, numerically solving this equation is prohibitively expensive due to the stiff collision terms. Furthermore, since the equilibrium solution is a (zero-momentum) Fermi-Dirac distribution resulting from joint action of both collisions, the simple BGK penalization designed for the one-scale collision [10] cannot capture the correct energy-transport limit. This problem was addressed in [13], where a thresholded BGK penalization was introduced. Here we propose an alternative based on a splitting approach. It has the advantage of treating the collisions at different scales separately, hence is free of choosing threshold and easier to implement. Formal asymptotic analysis and numerical results validate the efficiency and accuracy of the proposed scheme.
Citation: Jingwei Hu, Shi Jin, Li Wang. An asymptotic-preserving scheme for the semiconductor Boltzmann equation with two-scale collisions: A splitting approach. Kinetic & Related Models, 2015, 8 (4) : 707-723. doi: 10.3934/krm.2015.8.707
References:
[1]

N. B. Abdallah and P. Degond, On a hierarchy of macroscopic models for semiconductors,, J. Math. Phys., 37 (1996), 3306.  doi: 10.1063/1.531567.  Google Scholar

[2]

N. B. Abdallah, P. Degond and S. Genieys, An energy-transport model for semiconductors derived from the Boltzmann equation,, J. Stat. Phys., 84 (1996), 205.  doi: 10.1007/BF02179583.  Google Scholar

[3]

L. Arlotti and M. Lachowicz, Euler and Navier-Stokes limits of the Uehling-Uhlenbeck quantum kinetic equations,, J. Math. Phys., 38 (1997), 3571.  doi: 10.1063/1.531869.  Google Scholar

[4]

J. Carrillo, I. Gamba, A. Majorana and C.-W. Shu, 2D semiconductor device simulations by WENO-Boltzmann schemes: efficiency, boundary conditions and comparison to Monte Carlo methods,, J. Comput. Phys., 214 (2006), 55.  doi: 10.1016/j.jcp.2005.09.005.  Google Scholar

[5]

Y. Cheng, I. Gamba, A. Majorana and C.-W. Shu, A discontinous Galerkin solver for Boltzmann-Poisson systems in nano devices,, Comput. Methods Appl. Mech. Engrg., 198 (2009), 3130.  doi: 10.1016/j.cma.2009.05.015.  Google Scholar

[6]

P. Degond, Mathematical modelling of microelectronics semiconductor devices,, AMS/IP Studies in Advanced Mathematics, 15 (2000), 77.   Google Scholar

[7]

P. Degond, C. D. Levermore and C. Schmeiser, A note on the Energy-Transport limit of the semiconductor Boltzmann equation,, in Transport in Transition Regimes (ed. N. B. A. et al), (2004), 137.  doi: 10.1007/978-1-4613-0017-5_8.  Google Scholar

[8]

J. Deng, Asymptotic preserving schemes for semiconductor Boltzmann equation in the diffusive regime,, Numer. Math. Theor. Meth. Appl., 5 (2012), 278.  doi: 10.4208/nmtma.2012.m1045.  Google Scholar

[9]

G. Dimarco, L. Pareschi and V. Rispoli, Implicit-explicit Runge-Kutta schemes for the Boltzmann-Poisson system for semiconductors,, Commun. Comput. Phys., 15 (2014), 1291.   Google Scholar

[10]

F. Filbet and S. Jin, A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff sources,, J. Comput. Phys., 229 (2010), 7625.  doi: 10.1016/j.jcp.2010.06.017.  Google Scholar

[11]

J. Hu and S. Jin, On kinetic flux vector splitting schemes for quantum Euler equations,, Kinet. Relat. Models, 4 (2011), 517.  doi: 10.3934/krm.2011.4.517.  Google Scholar

[12]

J. Hu, Q. Li and L. Pareschi, Asymptotic-preserving exponential methods for the quantum Boltzmann equation with high-order accuracy,, J. Sci. Comput., 62 (2015), 555.  doi: 10.1007/s10915-014-9869-2.  Google Scholar

[13]

J. Hu and L. Wang, An asymptotic-preserving scheme for the semiconductor Boltzmann equation toward the energy-transport limit,, J. Comput. Phys., 281 (2015), 806.  doi: 10.1016/j.jcp.2014.10.050.  Google Scholar

[14]

S. Jin, Asymptotic preserving (AP) schemes for multiscale kinetic and hyperbolic equations: A review,, Riv. Mat. Univ. Parma, 3 (2012), 177.   Google Scholar

[15]

S. Jin and L. Pareschi, Discretization of the multiscale semiconductor Boltzmann equation by diffusive relaxation schemes,, J. Comput. Phys., 161 (2000), 312.  doi: 10.1006/jcph.2000.6506.  Google Scholar

[16]

S. Jin, L. Pareschi and G. Toscani, Uniformly accurate diffusive relaxation schemes for multiscale transport equations,, SIAM J. Numer. Anal., 38 (2000), 913.  doi: 10.1137/S0036142998347978.  Google Scholar

[17]

S. Jin and L. Wang, Asymptotic-preserving numerical schemes for the semiconductor Boltzmann equation efficient in the high field regime,, SIAM J. Sci. Comput., 35 (2013).  doi: 10.1137/120886534.  Google Scholar

[18]

A. Jüngel, Transport Equations for Semiconductors, vol. 773 of Lecture Notes in Physics,, Springer, (2009).  doi: 10.1007/978-3-540-89526-8.  Google Scholar

[19]

A. Jüngel, Energy transport in semiconductor devices,, Math. Computer Modelling Dynam. Sys., 16 (2010), 1.  doi: 10.1080/13873951003679017.  Google Scholar

[20]

P. A. Markowich, C. Ringhofer and C. Schmeiser, Semiconductor Equations,, Springer Verlag Wien, (1990).  doi: 10.1007/978-3-7091-6961-2.  Google Scholar

show all references

References:
[1]

N. B. Abdallah and P. Degond, On a hierarchy of macroscopic models for semiconductors,, J. Math. Phys., 37 (1996), 3306.  doi: 10.1063/1.531567.  Google Scholar

[2]

N. B. Abdallah, P. Degond and S. Genieys, An energy-transport model for semiconductors derived from the Boltzmann equation,, J. Stat. Phys., 84 (1996), 205.  doi: 10.1007/BF02179583.  Google Scholar

[3]

L. Arlotti and M. Lachowicz, Euler and Navier-Stokes limits of the Uehling-Uhlenbeck quantum kinetic equations,, J. Math. Phys., 38 (1997), 3571.  doi: 10.1063/1.531869.  Google Scholar

[4]

J. Carrillo, I. Gamba, A. Majorana and C.-W. Shu, 2D semiconductor device simulations by WENO-Boltzmann schemes: efficiency, boundary conditions and comparison to Monte Carlo methods,, J. Comput. Phys., 214 (2006), 55.  doi: 10.1016/j.jcp.2005.09.005.  Google Scholar

[5]

Y. Cheng, I. Gamba, A. Majorana and C.-W. Shu, A discontinous Galerkin solver for Boltzmann-Poisson systems in nano devices,, Comput. Methods Appl. Mech. Engrg., 198 (2009), 3130.  doi: 10.1016/j.cma.2009.05.015.  Google Scholar

[6]

P. Degond, Mathematical modelling of microelectronics semiconductor devices,, AMS/IP Studies in Advanced Mathematics, 15 (2000), 77.   Google Scholar

[7]

P. Degond, C. D. Levermore and C. Schmeiser, A note on the Energy-Transport limit of the semiconductor Boltzmann equation,, in Transport in Transition Regimes (ed. N. B. A. et al), (2004), 137.  doi: 10.1007/978-1-4613-0017-5_8.  Google Scholar

[8]

J. Deng, Asymptotic preserving schemes for semiconductor Boltzmann equation in the diffusive regime,, Numer. Math. Theor. Meth. Appl., 5 (2012), 278.  doi: 10.4208/nmtma.2012.m1045.  Google Scholar

[9]

G. Dimarco, L. Pareschi and V. Rispoli, Implicit-explicit Runge-Kutta schemes for the Boltzmann-Poisson system for semiconductors,, Commun. Comput. Phys., 15 (2014), 1291.   Google Scholar

[10]

F. Filbet and S. Jin, A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff sources,, J. Comput. Phys., 229 (2010), 7625.  doi: 10.1016/j.jcp.2010.06.017.  Google Scholar

[11]

J. Hu and S. Jin, On kinetic flux vector splitting schemes for quantum Euler equations,, Kinet. Relat. Models, 4 (2011), 517.  doi: 10.3934/krm.2011.4.517.  Google Scholar

[12]

J. Hu, Q. Li and L. Pareschi, Asymptotic-preserving exponential methods for the quantum Boltzmann equation with high-order accuracy,, J. Sci. Comput., 62 (2015), 555.  doi: 10.1007/s10915-014-9869-2.  Google Scholar

[13]

J. Hu and L. Wang, An asymptotic-preserving scheme for the semiconductor Boltzmann equation toward the energy-transport limit,, J. Comput. Phys., 281 (2015), 806.  doi: 10.1016/j.jcp.2014.10.050.  Google Scholar

[14]

S. Jin, Asymptotic preserving (AP) schemes for multiscale kinetic and hyperbolic equations: A review,, Riv. Mat. Univ. Parma, 3 (2012), 177.   Google Scholar

[15]

S. Jin and L. Pareschi, Discretization of the multiscale semiconductor Boltzmann equation by diffusive relaxation schemes,, J. Comput. Phys., 161 (2000), 312.  doi: 10.1006/jcph.2000.6506.  Google Scholar

[16]

S. Jin, L. Pareschi and G. Toscani, Uniformly accurate diffusive relaxation schemes for multiscale transport equations,, SIAM J. Numer. Anal., 38 (2000), 913.  doi: 10.1137/S0036142998347978.  Google Scholar

[17]

S. Jin and L. Wang, Asymptotic-preserving numerical schemes for the semiconductor Boltzmann equation efficient in the high field regime,, SIAM J. Sci. Comput., 35 (2013).  doi: 10.1137/120886534.  Google Scholar

[18]

A. Jüngel, Transport Equations for Semiconductors, vol. 773 of Lecture Notes in Physics,, Springer, (2009).  doi: 10.1007/978-3-540-89526-8.  Google Scholar

[19]

A. Jüngel, Energy transport in semiconductor devices,, Math. Computer Modelling Dynam. Sys., 16 (2010), 1.  doi: 10.1080/13873951003679017.  Google Scholar

[20]

P. A. Markowich, C. Ringhofer and C. Schmeiser, Semiconductor Equations,, Springer Verlag Wien, (1990).  doi: 10.1007/978-3-7091-6961-2.  Google Scholar

[1]

François Dubois. Third order equivalent equation of lattice Boltzmann scheme. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 221-248. doi: 10.3934/dcds.2009.23.221

[2]

Franck Davhys Reval Langa, Morgan Pierre. A doubly splitting scheme for the Caginalp system with singular potentials and dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 653-676. doi: 10.3934/dcdss.2020353

[3]

Luis Caffarelli, Fanghua Lin. Nonlocal heat flows preserving the L2 energy. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 49-64. doi: 10.3934/dcds.2009.23.49

[4]

Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29 (1) : 1859-1880. doi: 10.3934/era.2020095

[5]

Xiaoxiao Li, Yingjing Shi, Rui Li, Shida Cao. Energy management method for an unpowered landing. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020180

[6]

Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020407

[7]

Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021003

[8]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[9]

Tong Yang, Seiji Ukai, Huijiang Zhao. Stationary solutions to the exterior problems for the Boltzmann equation, I. Existence. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 495-520. doi: 10.3934/dcds.2009.23.495

[10]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[11]

Pavel Eichler, Radek Fučík, Robert Straka. Computational study of immersed boundary - lattice Boltzmann method for fluid-structure interaction. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 819-833. doi: 10.3934/dcdss.2020349

[12]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[13]

Mengting Fang, Yuanshi Wang, Mingshu Chen, Donald L. DeAngelis. Asymptotic population abundance of a two-patch system with asymmetric diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3411-3425. doi: 10.3934/dcds.2020031

[14]

Pan Zheng. Asymptotic stability in a chemotaxis-competition system with indirect signal production. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1207-1223. doi: 10.3934/dcds.2020315

[15]

Shengxin Zhu, Tongxiang Gu, Xingping Liu. AIMS: Average information matrix splitting. Mathematical Foundations of Computing, 2020, 3 (4) : 301-308. doi: 10.3934/mfc.2020012

[16]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[17]

Manuel del Pino, Monica Musso, Juncheng Wei, Yifu Zhou. Type Ⅱ finite time blow-up for the energy critical heat equation in $ \mathbb{R}^4 $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3327-3355. doi: 10.3934/dcds.2020052

[18]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[19]

Thomas Y. Hou, Dong Liang. Multiscale analysis for convection dominated transport equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 281-298. doi: 10.3934/dcds.2009.23.281

[20]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (26)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]