\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Relativistic transfer equations: Comparison principle and convergence to the non-equilibrium regime

Abstract Related Papers Cited by
  • We consider the relativistic transfer equations for photons interacting via emission absorption and scattering with a moving fluid. We prove a comparison principle and we study the non-equilibrium regime: the relativistic correction terms in the scattering operator lead to a frequency drift term modeling the Doppler effects. We prove that the solution of the relativistic transfer equations converges toward the solution of this drift diffusion equation.
    Mathematics Subject Classification: Primary: 35B51, 35Q85, 35B40; Secondary: 35K65.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    G. Allaire and F. Golse, Transport et Diffusion, Cours de l'école Polytechnique, chapitre 4, 2012.

    [2]

    C. Bardos, F. Golse and B. Perthame, The Rosseland approximation for the radiative transfer equations, Communications on Pure and Applied Mathematics, 40 (1987), 691-721.doi: 10.1002/cpa.3160400603.

    [3]

    C. Bardos, F. Golse, B. Perthame and R. Sentis, The nonaccretive radiative transfer equations: Existence of solutions and Rosseland approximation, Journal of Functional Analysis, 77 (1988), 434-460.doi: 10.1016/0022-1236(88)90096-1.

    [4]

    H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, 2011.

    [5]

    C. Buet and B. Després, Asymptotic analysis of fluid models for the coupling of radiation and hydrodynamics, Journal of Quantitative Spectroscopy and Radiative Transfer, 85 (2004), 385-418.doi: 10.1016/S0022-4073(03)00233-4.

    [6]

    M. G. Crandall and T. M. Liggett, Generation of semi-groups of nonlinear transformations on general Banach spaces, American Journal of Mathematics, 93 (1971), 265-298.doi: 10.2307/2373376.

    [7]

    J. A. Carrillo, J. Rosado and F. Salvarani, 1D nonlinear Fokker Planck equations for fermions and bosons, Applied Mathematics Letters, 21 (2008), 148-154.doi: 10.1016/j.aml.2006.06.023.

    [8]

    R. Dautray and J. L. Lions, Analyse Mathématique et Calcul Numérique Masson, 1985.

    [9]

    C. Dogbe, The radiative transfer equations: Diffusion approximation under accretiveness and compactness assumptions, Computers & Mathematics with Applications, 42 (2001), 783-791.doi: 10.1016/S0898-1221(01)00198-5.

    [10]

    B. Ducomet and S. Nečasová, Diffusion limits in a model of radiative flow, Annali Dell' Universita di Ferrara, 61 (2015), 17-59.doi: 10.1007/s11565-014-0214-3.

    [11]

    P. Godillon-Lafitte and T. Goudon, A coupled model for radiative transfer: Doppler effects, equilibrium, and non-equilibrium diffusion asymptotics, Multiscale Model. Simul., 4 (2005), 1245-1279.doi: 10.1137/040621041.

    [12]

    F. Golse and B. Perthame, Generalized solutions of the radiative transfer equations in a singular case, Communications in Mathematical Physics, 106 (1986), 211-239.doi: 10.1007/BF01454973.

    [13]

    F. Golse and F. Salvarani, The Rosseland limit for radiative transfer in gray matter, hal-00268799, 2008.

    [14]

    D. Mihalas and B. Weibel Mihalas, Foundations of Radiation Hydrodynamics, Oxford University Press, New York, 1984.doi: 10.1063/1.2815048.

    [15]

    A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, 1983.doi: 10.1007/978-1-4612-5561-1.

    [16]

    G. C. Pomraning, The Equations of Radiation Hydrodynamics, Dover Publications 1973.

    [17]

    A. M. Winslow, Multifrequency-grey method for radiation diffusion with Compton scattering, Journal of Computational Physics, 117 (1995), 262-273.

    [18]

    Y. Li and S. Zhu, Existence results and blow-up criterion of compressible radiation hydrodynamic equations, Journal of Dynamics and Differential Equations, 2015, arXiv:1407.7830.doi: 10.1007/s10884-015-9455-9.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(57) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return