• Previous Article
    Strong solutions to compressible barotropic viscoelastic flow with vacuum
  • KRM Home
  • This Issue
  • Next Article
    An asymptotic-preserving scheme for the semiconductor Boltzmann equation with two-scale collisions: A splitting approach
December  2015, 8(4): 725-763. doi: 10.3934/krm.2015.8.725

Relativistic transfer equations: Comparison principle and convergence to the non-equilibrium regime

1. 

Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, 75252 Paris Cedex 05, France

Received  March 2015 Revised  June 2015 Published  July 2015

We consider the relativistic transfer equations for photons interacting via emission absorption and scattering with a moving fluid. We prove a comparison principle and we study the non-equilibrium regime: the relativistic correction terms in the scattering operator lead to a frequency drift term modeling the Doppler effects. We prove that the solution of the relativistic transfer equations converges toward the solution of this drift diffusion equation.
Citation: Thomas Leroy. Relativistic transfer equations: Comparison principle and convergence to the non-equilibrium regime. Kinetic & Related Models, 2015, 8 (4) : 725-763. doi: 10.3934/krm.2015.8.725
References:
[1]

G. Allaire and F. Golse, Transport et Diffusion,, Cours de l'école Polytechnique, (2012). Google Scholar

[2]

C. Bardos, F. Golse and B. Perthame, The Rosseland approximation for the radiative transfer equations,, Communications on Pure and Applied Mathematics, 40 (1987), 691. doi: 10.1002/cpa.3160400603. Google Scholar

[3]

C. Bardos, F. Golse, B. Perthame and R. Sentis, The nonaccretive radiative transfer equations: Existence of solutions and Rosseland approximation,, Journal of Functional Analysis, 77 (1988), 434. doi: 10.1016/0022-1236(88)90096-1. Google Scholar

[4]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations,, Springer, (2011). Google Scholar

[5]

C. Buet and B. Després, Asymptotic analysis of fluid models for the coupling of radiation and hydrodynamics,, Journal of Quantitative Spectroscopy and Radiative Transfer, 85 (2004), 385. doi: 10.1016/S0022-4073(03)00233-4. Google Scholar

[6]

M. G. Crandall and T. M. Liggett, Generation of semi-groups of nonlinear transformations on general Banach spaces,, American Journal of Mathematics, 93 (1971), 265. doi: 10.2307/2373376. Google Scholar

[7]

J. A. Carrillo, J. Rosado and F. Salvarani, 1D nonlinear Fokker Planck equations for fermions and bosons,, Applied Mathematics Letters, 21 (2008), 148. doi: 10.1016/j.aml.2006.06.023. Google Scholar

[8]

R. Dautray and J. L. Lions, Analyse Mathématique et Calcul Numérique, Masson, (1985). Google Scholar

[9]

C. Dogbe, The radiative transfer equations: Diffusion approximation under accretiveness and compactness assumptions,, Computers & Mathematics with Applications, 42 (2001), 783. doi: 10.1016/S0898-1221(01)00198-5. Google Scholar

[10]

B. Ducomet and S. Nečasová, Diffusion limits in a model of radiative flow,, Annali Dell' Universita di Ferrara, 61 (2015), 17. doi: 10.1007/s11565-014-0214-3. Google Scholar

[11]

P. Godillon-Lafitte and T. Goudon, A coupled model for radiative transfer: Doppler effects, equilibrium, and non-equilibrium diffusion asymptotics,, Multiscale Model. Simul., 4 (2005), 1245. doi: 10.1137/040621041. Google Scholar

[12]

F. Golse and B. Perthame, Generalized solutions of the radiative transfer equations in a singular case,, Communications in Mathematical Physics, 106 (1986), 211. doi: 10.1007/BF01454973. Google Scholar

[13]

F. Golse and F. Salvarani, The Rosseland limit for radiative transfer in gray matter,, hal-00268799, (2008). Google Scholar

[14]

D. Mihalas and B. Weibel Mihalas, Foundations of Radiation Hydrodynamics,, Oxford University Press, (1984). doi: 10.1063/1.2815048. Google Scholar

[15]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Springer-Verlag, (1983). doi: 10.1007/978-1-4612-5561-1. Google Scholar

[16]

G. C. Pomraning, The Equations of Radiation Hydrodynamics,, Dover Publications 1973., (1973). Google Scholar

[17]

A. M. Winslow, Multifrequency-grey method for radiation diffusion with Compton scattering,, Journal of Computational Physics, 117 (1995), 262. Google Scholar

[18]

Y. Li and S. Zhu, Existence results and blow-up criterion of compressible radiation hydrodynamic equations,, Journal of Dynamics and Differential Equations, (2015). doi: 10.1007/s10884-015-9455-9. Google Scholar

show all references

References:
[1]

G. Allaire and F. Golse, Transport et Diffusion,, Cours de l'école Polytechnique, (2012). Google Scholar

[2]

C. Bardos, F. Golse and B. Perthame, The Rosseland approximation for the radiative transfer equations,, Communications on Pure and Applied Mathematics, 40 (1987), 691. doi: 10.1002/cpa.3160400603. Google Scholar

[3]

C. Bardos, F. Golse, B. Perthame and R. Sentis, The nonaccretive radiative transfer equations: Existence of solutions and Rosseland approximation,, Journal of Functional Analysis, 77 (1988), 434. doi: 10.1016/0022-1236(88)90096-1. Google Scholar

[4]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations,, Springer, (2011). Google Scholar

[5]

C. Buet and B. Després, Asymptotic analysis of fluid models for the coupling of radiation and hydrodynamics,, Journal of Quantitative Spectroscopy and Radiative Transfer, 85 (2004), 385. doi: 10.1016/S0022-4073(03)00233-4. Google Scholar

[6]

M. G. Crandall and T. M. Liggett, Generation of semi-groups of nonlinear transformations on general Banach spaces,, American Journal of Mathematics, 93 (1971), 265. doi: 10.2307/2373376. Google Scholar

[7]

J. A. Carrillo, J. Rosado and F. Salvarani, 1D nonlinear Fokker Planck equations for fermions and bosons,, Applied Mathematics Letters, 21 (2008), 148. doi: 10.1016/j.aml.2006.06.023. Google Scholar

[8]

R. Dautray and J. L. Lions, Analyse Mathématique et Calcul Numérique, Masson, (1985). Google Scholar

[9]

C. Dogbe, The radiative transfer equations: Diffusion approximation under accretiveness and compactness assumptions,, Computers & Mathematics with Applications, 42 (2001), 783. doi: 10.1016/S0898-1221(01)00198-5. Google Scholar

[10]

B. Ducomet and S. Nečasová, Diffusion limits in a model of radiative flow,, Annali Dell' Universita di Ferrara, 61 (2015), 17. doi: 10.1007/s11565-014-0214-3. Google Scholar

[11]

P. Godillon-Lafitte and T. Goudon, A coupled model for radiative transfer: Doppler effects, equilibrium, and non-equilibrium diffusion asymptotics,, Multiscale Model. Simul., 4 (2005), 1245. doi: 10.1137/040621041. Google Scholar

[12]

F. Golse and B. Perthame, Generalized solutions of the radiative transfer equations in a singular case,, Communications in Mathematical Physics, 106 (1986), 211. doi: 10.1007/BF01454973. Google Scholar

[13]

F. Golse and F. Salvarani, The Rosseland limit for radiative transfer in gray matter,, hal-00268799, (2008). Google Scholar

[14]

D. Mihalas and B. Weibel Mihalas, Foundations of Radiation Hydrodynamics,, Oxford University Press, (1984). doi: 10.1063/1.2815048. Google Scholar

[15]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Springer-Verlag, (1983). doi: 10.1007/978-1-4612-5561-1. Google Scholar

[16]

G. C. Pomraning, The Equations of Radiation Hydrodynamics,, Dover Publications 1973., (1973). Google Scholar

[17]

A. M. Winslow, Multifrequency-grey method for radiation diffusion with Compton scattering,, Journal of Computational Physics, 117 (1995), 262. Google Scholar

[18]

Y. Li and S. Zhu, Existence results and blow-up criterion of compressible radiation hydrodynamic equations,, Journal of Dynamics and Differential Equations, (2015). doi: 10.1007/s10884-015-9455-9. Google Scholar

[1]

Hiroshi Watanabe. Existence and uniqueness of entropy solutions to strongly degenerate parabolic equations with discontinuous coefficients. Conference Publications, 2013, 2013 (special) : 781-790. doi: 10.3934/proc.2013.2013.781

[2]

Rui Huang, Yifu Wang, Yuanyuan Ke. Existence of non-trivial nonnegative periodic solutions for a class of degenerate parabolic equations with nonlocal terms. Discrete & Continuous Dynamical Systems - B, 2005, 5 (4) : 1005-1014. doi: 10.3934/dcdsb.2005.5.1005

[3]

Kenneth Hvistendahl Karlsen, Nils Henrik Risebro. On the uniqueness and stability of entropy solutions of nonlinear degenerate parabolic equations with rough coefficients. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1081-1104. doi: 10.3934/dcds.2003.9.1081

[4]

Stanislav Antontsev, Michel Chipot, Sergey Shmarev. Uniqueness and comparison theorems for solutions of doubly nonlinear parabolic equations with nonstandard growth conditions. Communications on Pure & Applied Analysis, 2013, 12 (4) : 1527-1546. doi: 10.3934/cpaa.2013.12.1527

[5]

Peiying Chen. Existence and uniqueness of weak solutions for a class of nonlinear parabolic equations. Electronic Research Announcements, 2017, 24: 38-52. doi: 10.3934/era.2017.24.005

[6]

Dominique Blanchard, Olivier Guibé, Hicham Redwane. Existence and uniqueness of a solution for a class of parabolic equations with two unbounded nonlinearities. Communications on Pure & Applied Analysis, 2016, 15 (1) : 197-217. doi: 10.3934/cpaa.2016.15.197

[7]

Jifeng Chu, Zaitao Liang, Fangfang Liao, Shiping Lu. Existence and stability of periodic solutions for relativistic singular equations. Communications on Pure & Applied Analysis, 2017, 16 (2) : 591-609. doi: 10.3934/cpaa.2017029

[8]

Shitao Liu, Roberto Triggiani. Determining damping and potential coefficients of an inverse problem for a system of two coupled hyperbolic equations. Part I: Global uniqueness. Conference Publications, 2011, 2011 (Special) : 1001-1014. doi: 10.3934/proc.2011.2011.1001

[9]

Maria Francesca Betta, Rosaria Di Nardo, Anna Mercaldo, Adamaria Perrotta. Gradient estimates and comparison principle for some nonlinear elliptic equations. Communications on Pure & Applied Analysis, 2015, 14 (3) : 897-922. doi: 10.3934/cpaa.2015.14.897

[10]

H. Gajewski, I. V. Skrypnik. To the uniqueness problem for nonlinear parabolic equations. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 315-336. doi: 10.3934/dcds.2004.10.315

[11]

Ugur G. Abdulla. On the optimal control of the free boundary problems for the second order parabolic equations. II. Convergence of the method of finite differences. Inverse Problems & Imaging, 2016, 10 (4) : 869-898. doi: 10.3934/ipi.2016025

[12]

Simona Fornaro, Ugo Gianazza. Local properties of non-negative solutions to some doubly non-linear degenerate parabolic equations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 481-492. doi: 10.3934/dcds.2010.26.481

[13]

Genni Fragnelli, Paolo Nistri, Duccio Papini. Non-trivial non-negative periodic solutions of a system of doubly degenerate parabolic equations with nonlocal terms. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 35-64. doi: 10.3934/dcds.2011.31.35

[14]

Hua Chen, Huiyang Xu. Global existence and blow-up of solutions for infinitely degenerate semilinear pseudo-parabolic equations with logarithmic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 1185-1203. doi: 10.3934/dcds.2019051

[15]

Genni Fragnelli, Paolo Nistri, Duccio Papini. Corrigendum: Nnon-trivial non-negative periodic solutions of a system of doubly degenerate parabolic equations with nonlocal terms. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3831-3834. doi: 10.3934/dcds.2013.33.3831

[16]

Genni Fragnelli. Null controllability of degenerate parabolic equations in non divergence form via Carleman estimates. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 687-701. doi: 10.3934/dcdss.2013.6.687

[17]

Yachun Li, Qiufang Shi. Global existence of the entropy solutions to the isentropic relativistic Euler equations. Communications on Pure & Applied Analysis, 2005, 4 (4) : 763-778. doi: 10.3934/cpaa.2005.4.763

[18]

Mikhail D. Surnachev, Vasily V. Zhikov. On existence and uniqueness classes for the Cauchy problem for parabolic equations of the p-Laplace type. Communications on Pure & Applied Analysis, 2013, 12 (4) : 1783-1812. doi: 10.3934/cpaa.2013.12.1783

[19]

Yachun Li, Xucai Ren. Non-relativistic global limits of the entropy solutions to the relativistic Euler equations with $\gamma$-law. Communications on Pure & Applied Analysis, 2006, 5 (4) : 963-979. doi: 10.3934/cpaa.2006.5.963

[20]

Xingwen Hao, Yachun Li, Zejun Wang. Non-relativistic global limits to the three dimensional relativistic euler equations with spherical symmetry. Communications on Pure & Applied Analysis, 2010, 9 (2) : 365-386. doi: 10.3934/cpaa.2010.9.365

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]