Citation: |
[1] |
G. Billet, V. Giovangigli and G. de Gassowski, Impact of volume viscosity on a shock-hydrogen bubble interaction, Comb. Theory Mod., 12 (2008), 221-248.doi: 10.1080/13647830701545875. |
[2] |
D. Bresch and B. Desjardins, On the existence of global weak solutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids, J. Math. Pure Appl., 87 (2007), 57-90.doi: 10.1016/j.matpur.2006.11.001. |
[3] |
D. Bruno and V. Giovangigli, Relaxation of internal temperature and volume viscosity, Phys. Fluids, 23 (2011), 093104.doi: 10.1063/1.3640083. |
[4] |
D. Bruno and V. Giovangigli, Erratum: "Relaxation of internal temperature and volume viscosity'' [Phys. Fluids 23, 093104 (2011)], Phys. Fluids, 25 (2013), 039902.doi: 10.1063/1.4795334. |
[5] |
D. Bruno, F. Esposito and V. Giovangigli, Relaxation of rotational-vibrational energy and volume viscosity in $H-H_2$ mixtures, J. Chem. Physics, 138 (2013), 084302. |
[6] |
S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases, Cambridge University Press, Cambridge, 1970. |
[7] |
G. Q. Chen, C. D. Levermore and T.-P. Liu, Hyperbolic conservation laws with stiff relaxation terms and entropy, Comm. Pure Appl. Math., 47 (1994), 787-830.doi: 10.1002/cpa.3160470602. |
[8] |
C. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, Springer-Verlag, Berlin, 2000.doi: 10.1007/3-540-29089-3_14. |
[9] |
G. Emanuel, Bulk viscosity of a dilute polyatomic gas, Phys. Fluids A, 2 (1990), 2252-2254.doi: 10.1063/1.857813. |
[10] |
G. Emanuel, Effect of bulk viscosity on a hypersonic boundary layer, Phys. Fluids A, 4 (1992), 491-495.doi: 10.1063/1.858322. |
[11] |
A. Ern and V. Giovangigli, Multicomponent Transport Algorithms, Lecture Notes in Physics Monographs, 24, Springer-Verlag, Berlin, 1994. |
[12] |
A. Ern and V. Giovangigli, Volume viscosity of dilute polyatomic gas mixtures, Eur. J. Mech. B/Fluids, 14 (1995), 653-669. |
[13] |
A. Ern and V. Giovangigli, Projected iterative algorithms with application to multicomponent transport, Lin. Alg. App., 250 (1997), 289-315.doi: 10.1016/0024-3795(95)00502-1. |
[14] |
A. Ern and V. Giovangigli, The Kinetic equilibrium regime, Physica-A, 260 (1998), 49-72. |
[15] |
E. Feireisl, Dynamics of Viscous Compressible Fluids, Oxford University Press, Oxford, 2004. |
[16] |
J. H. Ferziger and H. G. Kaper, Mathematical Theory of Transport Processes in Gases, North Holland, Amsterdam, 1972. |
[17] |
K. O. Friedrichs and P. D. Lax, Systems of conservation laws with a convex extension, Proc. Nat. Acad. Sci. USA, 68 (1971), 1686-1688.doi: 10.1073/pnas.68.8.1686. |
[18] |
V. Giovangigli, Multicomponent Flow Modeling, Birkhaüser, Boston, 1999.doi: 10.1007/978-1-4612-1580-6. |
[19] |
V. Giovangigli and M. Massot, Asymptotic stability of equilibrium states for multicomponent reactive flows, Math. Mod. Meth. App. Sci., 8 (1998), 251-297.doi: 10.1142/S0218202598000123. |
[20] |
V. Giovangigli and M. Massot, Entropic structure of multicomponent reactive flows with partial equilibrium reduced chemistry, Math. Meth. Appl. Sci., 27 (2004), 739-768.doi: 10.1002/mma.429. |
[21] |
V. Giovangigli and L. Matuszewski, Supercritical fluid thermodynamics from equations of state, Phys. D, 241 (2012), 649-670.doi: 10.1016/j.physd.2011.12.002. |
[22] |
V. Giovangigli and L. Matuszewski, Mathematical modeling of supercritical multicomponent reactive fluids, Math. Mod. Meth. App. Sci., 23 (2013), 2193-2251.doi: 10.1142/S0218202513500309. |
[23] |
V. Giovangigli and L. Matuszewski, Structure of entropies in dissipative multicomponent fluids, Kin. Rel. Mod., 6 (2013), 373-406.doi: 10.3934/krm.2013.6.373. |
[24] |
V. Giovangigli and W.-A. Yong, Volume viscosity and fast internal energy relaxation: Convergence results, (submitted for publication). |
[25] |
S. Godunov, An interesting class of quasilinear systems, Dokl. Akad. Nauk SSSR, 139 (1961), 521-523. |
[26] |
R. E. Graves and B. Argrow, Bulk viscosity: Past to present, J. Therm. Heat Transfer, 13 (1999), 337-342.doi: 10.2514/2.6443. |
[27] |
J. O. Hirschfelder, C. F. Curtiss and R. B. Bird, Molecular Theory of Gases and Liquids, New-York, Wiley, 1954. |
[28] |
T. J. R. Hughes, L. P. Franca and M. Mallet, A new finite element formulation for computational fluid dynamics: I. Symmetric forms of the compressible Euler and Navier-Stokes equations and the second law of thermodynamics, Comp. Meth. Appl. Mech. Eng., 54 (1986), 223-234.doi: 10.1016/0045-7825(86)90127-1. |
[29] |
S. M. Karim and L. Rosenhead, The second coefficient of viscosity of Liquids and gases, Rev. Mod. Phys, 24 (1952), 108-116.doi: 10.1103/RevModPhys.24.108. |
[30] |
S. Kawashima, Systems of a Hyperbolic-Parabolic Composite Type, with Applications to the Equations of Magnetohydrodynamics, Doctoral Thesis, Kyoto University 1984. |
[31] |
S. Kawashima, Large-time behavior of solutions to hyperbolic-parabolic systems of conservations laws and applications, Proc. Roy. Soc. Edinburgh, 106 (1987), 169-194.doi: 10.1017/S0308210500018308. |
[32] |
S. Kawashima and Y. Shizuta, On the normal form of the symmetric hyperbolic-parabolic systems associated with the conservation laws, Tôhoku Math. J., 40 (1988), 449-464.doi: 10.2748/tmj/1178227986. |
[33] |
S. Kawashima and W.-A. Yong, Dissipative structure and entropy for hyperbolic systems of conservation laws, Arch. Rat. Mech. Anal., 174 (2004), 345-364.doi: 10.1007/s00205-004-0330-9. |
[34] |
J. Keizer, Statistical Thermodynamics of Nonequilibrium Processes, Springer-Verlag, New York, 1987.doi: 10.1007/978-1-4612-1054-2. |
[35] |
C. Lattanzio and W.-A. Yong, Hyperbolic-parabolic singular limits for first-order nonlinear systems, Comm. Partial Diff. Equ., 26 (2001), 939-964.doi: 10.1081/PDE-100002384. |
[36] |
T.-P. Liu, Hyperbolic conservation laws with relaxation, Comm. Math. Physics, 108 (1987), 153-175.doi: 10.1007/BF01210707. |
[37] |
F. R. McCourt, J. J. Beenakker, W. E. Köhler and I. Kuscer, Non Equilibrium Phenomena in Polyatomic Gases, Volume I: Dilute Gases, Volume II: Cross Sections, Scattering and Rarefied Gases, Clarendon Press, Oxford, 1990. |
[38] |
E. Nagnibeda and E. Kustova, Non-Equilibrium Reacting Gas Flow, Springer-Verlag, Berlin, 2009.doi: 10.1007/978-3-642-01390-4. |
[39] |
G. J. Prangsma, A. H. Alberga and J. J. M. Beenakker, Ultrasonic determination of the volume viscosity of N${}_2^{}$, CO, CH${}_4^{}$, and CD${}_4^{}$ between 77 and 300K, Physica, 64 (1973), 278-288. |
[40] |
D. Serre, Systèmes de Lois de Conservation I et II, Diderot Editeur, Art et Science, Paris, 1996. |
[41] |
D. Serre, The Structure of Dissipative Viscous System of Conservation laws, Physica D, 239 (2010), 1381-1386.doi: 10.1016/j.physd.2009.03.014. |
[42] |
Y. Shizuta and S. Kawashima, Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation, Hokkaido Math. J., 14 (1985), 249-275.doi: 10.14492/hokmj/1381757663. |
[43] |
L. Tisza, Supersonic absorption and Stokes viscosity relation, Phys. Rev., 61 (1942), 531-536.doi: 10.1103/PhysRev.61.531. |
[44] |
T. Umeda, S. Kawashima and Y. Shizuta, On the decay of solutions to the linearized equations of electro-magneto-fluid dynamics, Japan J. Appl. Math., 1 (1984), 435-457.doi: 10.1007/BF03167068. |
[45] |
A. I. Vol'pert and S. I. Hudjaev, On the Cauchy problem for composite systems of nonlinear differential equations, Mat. Sb. (N.S.), 87 (1972), 504-528. |
[46] |
L. Waldmann and E. Trübenbacher, Formale kinetische Theorie von Gasgemischen aus anregbaren molekülen, Zeitschr. Naturforschg., 17a (1962), 363-376. |
[47] |
W.-A. Yong, Basic aspects of hyperbolic relaxation systems, in Advances in the theory of shock waves, Progress in nonlinear differential equations and their applications, Birkhäuser Boston, 47 (2001), 259-305. |
[48] |
W.-A. Yong, Singular perturbations of first-order hyperbolic systems with stiff source terms, J. Diff. Equ., 155 (1999), 89-132.doi: 10.1006/jdeq.1998.3584. |
[49] |
W.-A. Yong and K. Zumbrun, Existence of relaxation shock profiles for hyperbolic conservation laws, Siam J. Appl. Math., 60 (2000), 1665-1675.doi: 10.1137/S0036139999352705. |
[50] |
W.-A. Yong, Entropy and global existence for hyperbolic balance laws, Arch. Rat. Mech. Anal., 172 (2004), 247-266.doi: 10.1007/s00205-003-0304-3. |
[51] |
W.-A. Yong, An interesting class of partial differential equations, J. Math. Physics, 49 (2008), 033503, 21pp.doi: 10.1063/1.2884710. |