March  2016, 9(1): 105-129. doi: 10.3934/krm.2016.9.105

Kinetic derivation of fractional Stokes and Stokes-Fourier systems

1. 

RICAM Linz, Austrian Academy of Sciences, Altenberger Str. 69, 4040 Linz, Austria

2. 

Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom

Received  September 2014 Revised  July 2015 Published  October 2015

In recent works it has been demonstrated that using an appropriate rescaling, linear Boltzmann-type equations give rise to a scalar fractional diffusion equation in the limit of a small mean free path. The equilibrium distributions are typically heavy-tailed distributions, but also classical Gaussian equilibrium distributions allow for this phenomena if combined with a degenerate collision frequency for small velocities. This work aims to an extension in the sense that a linear BGK-type equation conserving not only mass, but also momentum and energy, for both mentioned regimes of equilibrium distributions is considered. In the hydrodynamic limit we obtain a fractional diffusion equation for the temperature and density making use of the Boussinesq relation and we also demonstrate that with the same rescaling fractional diffusion cannot be derived additionally for the momentum. But considering the case of conservation of mass and momentum only, we do obtain the incompressible Stokes equation with fractional diffusion in the hydrodynamic limit for heavy-tailed equilibria.
Citation: Sabine Hittmeir, Sara Merino-Aceituno. Kinetic derivation of fractional Stokes and Stokes-Fourier systems. Kinetic & Related Models, 2016, 9 (1) : 105-129. doi: 10.3934/krm.2016.9.105
References:
[1]

C. Bardos, P. Penel, U. Frisch and P. L. Sulem, Modified dissipativity for a non-linear evolution equation arising in turbulence,, Arch. Ration. Mech. Anal., 71 (1979), 237.  doi: 10.1007/BF00280598.  Google Scholar

[2]

C. Bardos and S. Ukai, The classical incompressible Navier-Stokes limit of the Boltzmann equation,, Math. Models Methods Appl. Sci., 1 (1991), 235.  doi: 10.1142/S0218202591000137.  Google Scholar

[3]

N. Ben Abdallah, P. Degond, F. Deluzet, V. Latocha, R. Talaalout and M. H. Vignal, Diffusion limits of kinetic models,, Hyperbolic problems: theory, (2003), 3.   Google Scholar

[4]

N. Ben Abdallah, A. Mellet and M. Puel, Anomalous diffusion limit for kinetic equations with degenerate collision frequency,, Math. Models Methods Appl. Sci., 21 (2011), 2249.  doi: 10.1142/S0218202511005738.  Google Scholar

[5]

N. Ben Abdallah, A. Mellet and M. Puel, Fractional diffusion limit for collisional kinetic equations: a Hilbert expansion approach,, Kinet. Relat. Models, 4 (2011), 873.  doi: 10.3934/krm.2011.4.873.  Google Scholar

[6]

A. Bensoussan, J. L. Lions and G. Papanicolaou, Boundary layer analysis in homogeneization of diffusion equations with Dirichlet conditions in the half space., Proc. int. Symp. on stochastic differential equations, (1978), 21.   Google Scholar

[7]

A. V. Bobylev and I. M. Gamba, Boltzmann equations for mixtures of Maxwell gases: Exact solutions and power like tails,, J. Stat. Phys., 124 (2006), 497.  doi: 10.1007/s10955-006-9044-8.  Google Scholar

[8]

N. Crouseilles, P. Degond and M. Lemou, A hybrid kinetic-fluid model for solving the Vlasov-BGK equation,, J. Comput. Phys., 203 (2005), 572.  doi: 10.1016/j.jcp.2004.09.006.  Google Scholar

[9]

P. Degond, T. Goudon and F. Poupaud, Diffusion limit for nonhomogeneous and non-micro-reversible processes,, Indiana Univ. Math. J., 49 (2000), 1175.   Google Scholar

[10]

B. Düring and G. Toscani, International and domestic trading and wealth distribution., Commun. Math. Sci., 6 (2008), 1043.  doi: 10.4310/CMS.2008.v6.n4.a12.  Google Scholar

[11]

F. Golse, Hydrodynamic Limits,, European Congress of Mathematics, (2005), 699.   Google Scholar

[12]

F. Golse and C. D. Levermore, Stokes-Fourier and acoustic limits for the Boltzmann equation: convergence proofs., Comm. Pure Appl. Math., 55 (2002), 336.  doi: 10.1002/cpa.3011.  Google Scholar

[13]

M. Jara, T. Komorowski and S. Olla, Limit theorems for additive functionals of a Markov chain,, Ann. Appl. Probab., 19 (2009), 2270.  doi: 10.1214/09-AAP610.  Google Scholar

[14]

A. Mellet, S. Mischler and C. Mouhot, Fractional diffusion limit for collisional kinetic equations,, Arch. Ration. Mech. Anal., 199 (2011), 493.  doi: 10.1007/s00205-010-0354-2.  Google Scholar

[15]

A. Mellet, Fractional diffusion limit for collisional kinetic equations: A moments method,, Indiana Univ. Math. J., 59 (2010), 1333.  doi: 10.1512/iumj.2010.59.4128.  Google Scholar

[16]

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces,, Bull. Sci. Math., 136 (2012), 521.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[17]

L. Saint-Raymond, Hydrodynamic Limits of the Boltzmann Equation,, Lecture Notes in Mathematics, (2009).  doi: 10.1007/978-3-540-92847-8.  Google Scholar

[18]

H. Struchtrup, The BGK-model with velocity-dependent collision frequency,, Contin. Mech. Thermodyn., 9 (1997), 23.  doi: 10.1007/s001610050053.  Google Scholar

[19]

D. Summers and R. M. Thorne, The modified plasma dispersion function,, Phys. Fluids B, 3 (1991), 1835.  doi: 10.1063/1.859653.  Google Scholar

[20]

J. Wu, Lower bounds for an integral involving fractional Laplacians and the generalized Navier-Stokes equations in Besov spaces,, Commun. Math. Phys., 263 (2006), 803.  doi: 10.1007/s00220-005-1483-6.  Google Scholar

show all references

References:
[1]

C. Bardos, P. Penel, U. Frisch and P. L. Sulem, Modified dissipativity for a non-linear evolution equation arising in turbulence,, Arch. Ration. Mech. Anal., 71 (1979), 237.  doi: 10.1007/BF00280598.  Google Scholar

[2]

C. Bardos and S. Ukai, The classical incompressible Navier-Stokes limit of the Boltzmann equation,, Math. Models Methods Appl. Sci., 1 (1991), 235.  doi: 10.1142/S0218202591000137.  Google Scholar

[3]

N. Ben Abdallah, P. Degond, F. Deluzet, V. Latocha, R. Talaalout and M. H. Vignal, Diffusion limits of kinetic models,, Hyperbolic problems: theory, (2003), 3.   Google Scholar

[4]

N. Ben Abdallah, A. Mellet and M. Puel, Anomalous diffusion limit for kinetic equations with degenerate collision frequency,, Math. Models Methods Appl. Sci., 21 (2011), 2249.  doi: 10.1142/S0218202511005738.  Google Scholar

[5]

N. Ben Abdallah, A. Mellet and M. Puel, Fractional diffusion limit for collisional kinetic equations: a Hilbert expansion approach,, Kinet. Relat. Models, 4 (2011), 873.  doi: 10.3934/krm.2011.4.873.  Google Scholar

[6]

A. Bensoussan, J. L. Lions and G. Papanicolaou, Boundary layer analysis in homogeneization of diffusion equations with Dirichlet conditions in the half space., Proc. int. Symp. on stochastic differential equations, (1978), 21.   Google Scholar

[7]

A. V. Bobylev and I. M. Gamba, Boltzmann equations for mixtures of Maxwell gases: Exact solutions and power like tails,, J. Stat. Phys., 124 (2006), 497.  doi: 10.1007/s10955-006-9044-8.  Google Scholar

[8]

N. Crouseilles, P. Degond and M. Lemou, A hybrid kinetic-fluid model for solving the Vlasov-BGK equation,, J. Comput. Phys., 203 (2005), 572.  doi: 10.1016/j.jcp.2004.09.006.  Google Scholar

[9]

P. Degond, T. Goudon and F. Poupaud, Diffusion limit for nonhomogeneous and non-micro-reversible processes,, Indiana Univ. Math. J., 49 (2000), 1175.   Google Scholar

[10]

B. Düring and G. Toscani, International and domestic trading and wealth distribution., Commun. Math. Sci., 6 (2008), 1043.  doi: 10.4310/CMS.2008.v6.n4.a12.  Google Scholar

[11]

F. Golse, Hydrodynamic Limits,, European Congress of Mathematics, (2005), 699.   Google Scholar

[12]

F. Golse and C. D. Levermore, Stokes-Fourier and acoustic limits for the Boltzmann equation: convergence proofs., Comm. Pure Appl. Math., 55 (2002), 336.  doi: 10.1002/cpa.3011.  Google Scholar

[13]

M. Jara, T. Komorowski and S. Olla, Limit theorems for additive functionals of a Markov chain,, Ann. Appl. Probab., 19 (2009), 2270.  doi: 10.1214/09-AAP610.  Google Scholar

[14]

A. Mellet, S. Mischler and C. Mouhot, Fractional diffusion limit for collisional kinetic equations,, Arch. Ration. Mech. Anal., 199 (2011), 493.  doi: 10.1007/s00205-010-0354-2.  Google Scholar

[15]

A. Mellet, Fractional diffusion limit for collisional kinetic equations: A moments method,, Indiana Univ. Math. J., 59 (2010), 1333.  doi: 10.1512/iumj.2010.59.4128.  Google Scholar

[16]

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces,, Bull. Sci. Math., 136 (2012), 521.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[17]

L. Saint-Raymond, Hydrodynamic Limits of the Boltzmann Equation,, Lecture Notes in Mathematics, (2009).  doi: 10.1007/978-3-540-92847-8.  Google Scholar

[18]

H. Struchtrup, The BGK-model with velocity-dependent collision frequency,, Contin. Mech. Thermodyn., 9 (1997), 23.  doi: 10.1007/s001610050053.  Google Scholar

[19]

D. Summers and R. M. Thorne, The modified plasma dispersion function,, Phys. Fluids B, 3 (1991), 1835.  doi: 10.1063/1.859653.  Google Scholar

[20]

J. Wu, Lower bounds for an integral involving fractional Laplacians and the generalized Navier-Stokes equations in Besov spaces,, Commun. Math. Phys., 263 (2006), 803.  doi: 10.1007/s00220-005-1483-6.  Google Scholar

[1]

Hélène Hivert. Numerical schemes for kinetic equation with diffusion limit and anomalous time scale. Kinetic & Related Models, 2018, 11 (2) : 409-439. doi: 10.3934/krm.2018019

[2]

Pedro Aceves-Sánchez, Christian Schmeiser. Fractional diffusion limit of a linear kinetic equation in a bounded domain. Kinetic & Related Models, 2017, 10 (3) : 541-551. doi: 10.3934/krm.2017021

[3]

Tomasz Komorowski. Long time asymptotics of a degenerate linear kinetic transport equation. Kinetic & Related Models, 2014, 7 (1) : 79-108. doi: 10.3934/krm.2014.7.79

[4]

Lei Wu. Diffusive limit with geometric correction of unsteady neutron transport equation. Kinetic & Related Models, 2017, 10 (4) : 1163-1203. doi: 10.3934/krm.2017045

[5]

Giada Basile, Tomasz Komorowski, Stefano Olla. Diffusion limit for a kinetic equation with a thermostatted interface. Kinetic & Related Models, 2019, 12 (5) : 1185-1196. doi: 10.3934/krm.2019045

[6]

Roberta Bianchini, Roberto Natalini. Convergence of a vector-BGK approximation for the incompressible Navier-Stokes equations. Kinetic & Related Models, 2019, 12 (1) : 133-158. doi: 10.3934/krm.2019006

[7]

Hakima Bessaih, Yalchin Efendiev, Florin Maris. Homogenization of the evolution Stokes equation in a perforated domain with a stochastic Fourier boundary condition. Networks & Heterogeneous Media, 2015, 10 (2) : 343-367. doi: 10.3934/nhm.2015.10.343

[8]

Claude Bardos, François Golse, Ivan Moyano. Linear Boltzmann equation and fractional diffusion. Kinetic & Related Models, 2018, 11 (4) : 1011-1036. doi: 10.3934/krm.2018039

[9]

Rong Yang, Li Chen. Mean-field limit for a collision-avoiding flocking system and the time-asymptotic flocking dynamics for the kinetic equation. Kinetic & Related Models, 2014, 7 (2) : 381-400. doi: 10.3934/krm.2014.7.381

[10]

Stefan Possanner, Claudia Negulescu. Diffusion limit of a generalized matrix Boltzmann equation for spin-polarized transport. Kinetic & Related Models, 2011, 4 (4) : 1159-1191. doi: 10.3934/krm.2011.4.1159

[11]

Seok-Bae Yun. Entropy production for ellipsoidal BGK model of the Boltzmann equation. Kinetic & Related Models, 2016, 9 (3) : 605-619. doi: 10.3934/krm.2016009

[12]

Xu Yang, François Golse, Zhongyi Huang, Shi Jin. Numerical study of a domain decomposition method for a two-scale linear transport equation. Networks & Heterogeneous Media, 2006, 1 (1) : 143-166. doi: 10.3934/nhm.2006.1.143

[13]

Roman Romanov. Estimates of solutions of linear neutron transport equation at large time and spectral singularities. Kinetic & Related Models, 2012, 5 (1) : 113-128. doi: 10.3934/krm.2012.5.113

[14]

Wolfgang Wagner. Some properties of the kinetic equation for electron transport in semiconductors. Kinetic & Related Models, 2013, 6 (4) : 955-967. doi: 10.3934/krm.2013.6.955

[15]

Lukáš Poul. Existence of weak solutions to the Navier-Stokes-Fourier system on Lipschitz domains. Conference Publications, 2007, 2007 (Special) : 834-843. doi: 10.3934/proc.2007.2007.834

[16]

Casimir Emako, Luís Neves de Almeida, Nicolas Vauchelet. Existence and diffusive limit of a two-species kinetic model of chemotaxis. Kinetic & Related Models, 2015, 8 (2) : 359-380. doi: 10.3934/krm.2015.8.359

[17]

Nguyen Huy Tuan, Donal O'Regan, Tran Bao Ngoc. Continuity with respect to fractional order of the time fractional diffusion-wave equation. Evolution Equations & Control Theory, 2019, 0 (0) : 0-0. doi: 10.3934/eect.2020033

[18]

John C. Schotland, Vadim A. Markel. Fourier-Laplace structure of the inverse scattering problem for the radiative transport equation. Inverse Problems & Imaging, 2007, 1 (1) : 181-188. doi: 10.3934/ipi.2007.1.181

[19]

Anna Amirdjanova, Jie Xiong. Large deviation principle for a stochastic navier-Stokes equation in its vorticity form for a two-dimensional incompressible flow. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 651-666. doi: 10.3934/dcdsb.2006.6.651

[20]

Mohamed Alahyane, Abdelilah Hakim, Amine Laghrib, Said Raghay. Fluid image registration using a finite volume scheme of the incompressible Navier Stokes equation. Inverse Problems & Imaging, 2018, 12 (5) : 1055-1081. doi: 10.3934/ipi.2018044

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]