March  2016, 9(1): 105-129. doi: 10.3934/krm.2016.9.105

Kinetic derivation of fractional Stokes and Stokes-Fourier systems

1. 

RICAM Linz, Austrian Academy of Sciences, Altenberger Str. 69, 4040 Linz, Austria

2. 

Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom

Received  September 2014 Revised  July 2015 Published  October 2015

In recent works it has been demonstrated that using an appropriate rescaling, linear Boltzmann-type equations give rise to a scalar fractional diffusion equation in the limit of a small mean free path. The equilibrium distributions are typically heavy-tailed distributions, but also classical Gaussian equilibrium distributions allow for this phenomena if combined with a degenerate collision frequency for small velocities. This work aims to an extension in the sense that a linear BGK-type equation conserving not only mass, but also momentum and energy, for both mentioned regimes of equilibrium distributions is considered. In the hydrodynamic limit we obtain a fractional diffusion equation for the temperature and density making use of the Boussinesq relation and we also demonstrate that with the same rescaling fractional diffusion cannot be derived additionally for the momentum. But considering the case of conservation of mass and momentum only, we do obtain the incompressible Stokes equation with fractional diffusion in the hydrodynamic limit for heavy-tailed equilibria.
Citation: Sabine Hittmeir, Sara Merino-Aceituno. Kinetic derivation of fractional Stokes and Stokes-Fourier systems. Kinetic and Related Models, 2016, 9 (1) : 105-129. doi: 10.3934/krm.2016.9.105
References:
[1]

C. Bardos, P. Penel, U. Frisch and P. L. Sulem, Modified dissipativity for a non-linear evolution equation arising in turbulence, Arch. Ration. Mech. Anal., 71 (1979), 237-256. doi: 10.1007/BF00280598.

[2]

C. Bardos and S. Ukai, The classical incompressible Navier-Stokes limit of the Boltzmann equation, Math. Models Methods Appl. Sci., 1 (1991), 235-257. doi: 10.1142/S0218202591000137.

[3]

N. Ben Abdallah, P. Degond, F. Deluzet, V. Latocha, R. Talaalout and M. H. Vignal, Diffusion limits of kinetic models, Hyperbolic problems: theory, numerics, applications, Springer, (2003), 3-17.

[4]

N. Ben Abdallah, A. Mellet and M. Puel, Anomalous diffusion limit for kinetic equations with degenerate collision frequency, Math. Models Methods Appl. Sci., 21 (2011), 2249-2262. doi: 10.1142/S0218202511005738.

[5]

N. Ben Abdallah, A. Mellet and M. Puel, Fractional diffusion limit for collisional kinetic equations: a Hilbert expansion approach, Kinet. Relat. Models, 4 (2011), 873-900. doi: 10.3934/krm.2011.4.873.

[6]

A. Bensoussan, J. L. Lions and G. Papanicolaou, Boundary layer analysis in homogeneization of diffusion equations with Dirichlet conditions in the half space. Proc. int. Symp. on stochastic differential equations, Kyoto, (1978), 21-40.

[7]

A. V. Bobylev and I. M. Gamba, Boltzmann equations for mixtures of Maxwell gases: Exact solutions and power like tails, J. Stat. Phys., 124 (2006), 497-516. doi: 10.1007/s10955-006-9044-8.

[8]

N. Crouseilles, P. Degond and M. Lemou, A hybrid kinetic-fluid model for solving the Vlasov-BGK equation, J. Comput. Phys., 203 (2005), 572-601. doi: 10.1016/j.jcp.2004.09.006.

[9]

P. Degond, T. Goudon and F. Poupaud, Diffusion limit for nonhomogeneous and non-micro-reversible processes, Indiana Univ. Math. J., 49 (2000), 1175-1198.

[10]

B. Düring and G. Toscani, International and domestic trading and wealth distribution. Commun. Math. Sci., 6 (2008), 1043-1058. doi: 10.4310/CMS.2008.v6.n4.a12.

[11]

F. Golse, Hydrodynamic Limits, European Congress of Mathematics, Eur. Math. Soc., Zürich, (2005), 699-717.

[12]

F. Golse and C. D. Levermore, Stokes-Fourier and acoustic limits for the Boltzmann equation: convergence proofs. Comm. Pure Appl. Math., 55 (2002), 336-393. doi: 10.1002/cpa.3011.

[13]

M. Jara, T. Komorowski and S. Olla, Limit theorems for additive functionals of a Markov chain, Ann. Appl. Probab., 19, (2009), 2270-2300. doi: 10.1214/09-AAP610.

[14]

A. Mellet, S. Mischler and C. Mouhot, Fractional diffusion limit for collisional kinetic equations, Arch. Ration. Mech. Anal., 199 (2011), 493-525. doi: 10.1007/s00205-010-0354-2.

[15]

A. Mellet, Fractional diffusion limit for collisional kinetic equations: A moments method, Indiana Univ. Math. J., 59 (2010), 1333-1360. doi: 10.1512/iumj.2010.59.4128.

[16]

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573. doi: 10.1016/j.bulsci.2011.12.004.

[17]

L. Saint-Raymond, Hydrodynamic Limits of the Boltzmann Equation, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2009. doi: 10.1007/978-3-540-92847-8.

[18]

H. Struchtrup, The BGK-model with velocity-dependent collision frequency, Contin. Mech. Thermodyn., 9 (1997), 23-31. doi: 10.1007/s001610050053.

[19]

D. Summers and R. M. Thorne, The modified plasma dispersion function, Phys. Fluids B, 3 (1991), 1835-1847. doi: 10.1063/1.859653.

[20]

J. Wu, Lower bounds for an integral involving fractional Laplacians and the generalized Navier-Stokes equations in Besov spaces, Commun. Math. Phys., 263 (2006), 803-831. doi: 10.1007/s00220-005-1483-6.

show all references

References:
[1]

C. Bardos, P. Penel, U. Frisch and P. L. Sulem, Modified dissipativity for a non-linear evolution equation arising in turbulence, Arch. Ration. Mech. Anal., 71 (1979), 237-256. doi: 10.1007/BF00280598.

[2]

C. Bardos and S. Ukai, The classical incompressible Navier-Stokes limit of the Boltzmann equation, Math. Models Methods Appl. Sci., 1 (1991), 235-257. doi: 10.1142/S0218202591000137.

[3]

N. Ben Abdallah, P. Degond, F. Deluzet, V. Latocha, R. Talaalout and M. H. Vignal, Diffusion limits of kinetic models, Hyperbolic problems: theory, numerics, applications, Springer, (2003), 3-17.

[4]

N. Ben Abdallah, A. Mellet and M. Puel, Anomalous diffusion limit for kinetic equations with degenerate collision frequency, Math. Models Methods Appl. Sci., 21 (2011), 2249-2262. doi: 10.1142/S0218202511005738.

[5]

N. Ben Abdallah, A. Mellet and M. Puel, Fractional diffusion limit for collisional kinetic equations: a Hilbert expansion approach, Kinet. Relat. Models, 4 (2011), 873-900. doi: 10.3934/krm.2011.4.873.

[6]

A. Bensoussan, J. L. Lions and G. Papanicolaou, Boundary layer analysis in homogeneization of diffusion equations with Dirichlet conditions in the half space. Proc. int. Symp. on stochastic differential equations, Kyoto, (1978), 21-40.

[7]

A. V. Bobylev and I. M. Gamba, Boltzmann equations for mixtures of Maxwell gases: Exact solutions and power like tails, J. Stat. Phys., 124 (2006), 497-516. doi: 10.1007/s10955-006-9044-8.

[8]

N. Crouseilles, P. Degond and M. Lemou, A hybrid kinetic-fluid model for solving the Vlasov-BGK equation, J. Comput. Phys., 203 (2005), 572-601. doi: 10.1016/j.jcp.2004.09.006.

[9]

P. Degond, T. Goudon and F. Poupaud, Diffusion limit for nonhomogeneous and non-micro-reversible processes, Indiana Univ. Math. J., 49 (2000), 1175-1198.

[10]

B. Düring and G. Toscani, International and domestic trading and wealth distribution. Commun. Math. Sci., 6 (2008), 1043-1058. doi: 10.4310/CMS.2008.v6.n4.a12.

[11]

F. Golse, Hydrodynamic Limits, European Congress of Mathematics, Eur. Math. Soc., Zürich, (2005), 699-717.

[12]

F. Golse and C. D. Levermore, Stokes-Fourier and acoustic limits for the Boltzmann equation: convergence proofs. Comm. Pure Appl. Math., 55 (2002), 336-393. doi: 10.1002/cpa.3011.

[13]

M. Jara, T. Komorowski and S. Olla, Limit theorems for additive functionals of a Markov chain, Ann. Appl. Probab., 19, (2009), 2270-2300. doi: 10.1214/09-AAP610.

[14]

A. Mellet, S. Mischler and C. Mouhot, Fractional diffusion limit for collisional kinetic equations, Arch. Ration. Mech. Anal., 199 (2011), 493-525. doi: 10.1007/s00205-010-0354-2.

[15]

A. Mellet, Fractional diffusion limit for collisional kinetic equations: A moments method, Indiana Univ. Math. J., 59 (2010), 1333-1360. doi: 10.1512/iumj.2010.59.4128.

[16]

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573. doi: 10.1016/j.bulsci.2011.12.004.

[17]

L. Saint-Raymond, Hydrodynamic Limits of the Boltzmann Equation, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2009. doi: 10.1007/978-3-540-92847-8.

[18]

H. Struchtrup, The BGK-model with velocity-dependent collision frequency, Contin. Mech. Thermodyn., 9 (1997), 23-31. doi: 10.1007/s001610050053.

[19]

D. Summers and R. M. Thorne, The modified plasma dispersion function, Phys. Fluids B, 3 (1991), 1835-1847. doi: 10.1063/1.859653.

[20]

J. Wu, Lower bounds for an integral involving fractional Laplacians and the generalized Navier-Stokes equations in Besov spaces, Commun. Math. Phys., 263 (2006), 803-831. doi: 10.1007/s00220-005-1483-6.

[1]

Hélène Hivert. Numerical schemes for kinetic equation with diffusion limit and anomalous time scale. Kinetic and Related Models, 2018, 11 (2) : 409-439. doi: 10.3934/krm.2018019

[2]

Mohamad Rachid. Incompressible Navier-Stokes-Fourier limit from the Landau equation. Kinetic and Related Models, 2021, 14 (4) : 599-638. doi: 10.3934/krm.2021017

[3]

Pedro Aceves-Sánchez, Christian Schmeiser. Fractional diffusion limit of a linear kinetic equation in a bounded domain. Kinetic and Related Models, 2017, 10 (3) : 541-551. doi: 10.3934/krm.2017021

[4]

Tomasz Komorowski. Long time asymptotics of a degenerate linear kinetic transport equation. Kinetic and Related Models, 2014, 7 (1) : 79-108. doi: 10.3934/krm.2014.7.79

[5]

Lei Wu. Diffusive limit with geometric correction of unsteady neutron transport equation. Kinetic and Related Models, 2017, 10 (4) : 1163-1203. doi: 10.3934/krm.2017045

[6]

Giada Basile, Tomasz Komorowski, Stefano Olla. Diffusion limit for a kinetic equation with a thermostatted interface. Kinetic and Related Models, 2019, 12 (5) : 1185-1196. doi: 10.3934/krm.2019045

[7]

Roberta Bianchini, Roberto Natalini. Convergence of a vector-BGK approximation for the incompressible Navier-Stokes equations. Kinetic and Related Models, 2019, 12 (1) : 133-158. doi: 10.3934/krm.2019006

[8]

Hakima Bessaih, Yalchin Efendiev, Florin Maris. Homogenization of the evolution Stokes equation in a perforated domain with a stochastic Fourier boundary condition. Networks and Heterogeneous Media, 2015, 10 (2) : 343-367. doi: 10.3934/nhm.2015.10.343

[9]

Claude Bardos, François Golse, Ivan Moyano. Linear Boltzmann equation and fractional diffusion. Kinetic and Related Models, 2018, 11 (4) : 1011-1036. doi: 10.3934/krm.2018039

[10]

Rong Yang, Li Chen. Mean-field limit for a collision-avoiding flocking system and the time-asymptotic flocking dynamics for the kinetic equation. Kinetic and Related Models, 2014, 7 (2) : 381-400. doi: 10.3934/krm.2014.7.381

[11]

Zhendong Fang, Hao Wang. Convergence from two-species Vlasov-Poisson-Boltzmann system to two-fluid incompressible Navier-Stokes-Fourier-Poisson system. Discrete and Continuous Dynamical Systems - B, 2022, 27 (8) : 4347-4386. doi: 10.3934/dcdsb.2021231

[12]

Stefan Possanner, Claudia Negulescu. Diffusion limit of a generalized matrix Boltzmann equation for spin-polarized transport. Kinetic and Related Models, 2011, 4 (4) : 1159-1191. doi: 10.3934/krm.2011.4.1159

[13]

Yuan Xu, Fujun Zhou, Weihua Gong. Global Well-posedness and Optimal Decay Rate of the Quasi-static Incompressible Navier–Stokes–Fourier–Maxwell–Poisson System. Communications on Pure and Applied Analysis, 2022, 21 (5) : 1537-1565. doi: 10.3934/cpaa.2022028

[14]

Xu Yang, François Golse, Zhongyi Huang, Shi Jin. Numerical study of a domain decomposition method for a two-scale linear transport equation. Networks and Heterogeneous Media, 2006, 1 (1) : 143-166. doi: 10.3934/nhm.2006.1.143

[15]

Seok-Bae Yun. Entropy production for ellipsoidal BGK model of the Boltzmann equation. Kinetic and Related Models, 2016, 9 (3) : 605-619. doi: 10.3934/krm.2016009

[16]

Kamel Hamdache, Djamila Hamroun. Macroscopic limit of the kinetic Bloch equation. Kinetic and Related Models, 2021, 14 (3) : 541-570. doi: 10.3934/krm.2021015

[17]

Roman Romanov. Estimates of solutions of linear neutron transport equation at large time and spectral singularities. Kinetic and Related Models, 2012, 5 (1) : 113-128. doi: 10.3934/krm.2012.5.113

[18]

Vo Van Au, Jagdev Singh, Anh Tuan Nguyen. Well-posedness results and blow-up for a semi-linear time fractional diffusion equation with variable coefficients. Electronic Research Archive, 2021, 29 (6) : 3581-3607. doi: 10.3934/era.2021052

[19]

Wolfgang Wagner. Some properties of the kinetic equation for electron transport in semiconductors. Kinetic and Related Models, 2013, 6 (4) : 955-967. doi: 10.3934/krm.2013.6.955

[20]

Vo Anh Khoa, Thi Kim Thoa Thieu, Ekeoma Rowland Ijioma. On a pore-scale stationary diffusion equation: Scaling effects and correctors for the homogenization limit. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2451-2477. doi: 10.3934/dcdsb.2020190

2020 Impact Factor: 1.432

Metrics

  • PDF downloads (54)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]