March  2016, 9(1): 217-235. doi: 10.3934/krm.2016.9.217

A random cloud model for the Wigner equation

1. 

Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstrasse 39 - 10117 Berlin

Received  December 2014 Revised  July 2015 Published  October 2015

A probabilistic model for the Wigner equation is studied. The model is based on a particle system with the time evolution of a piecewise deterministic Markov process. Each particle is characterized by a real-valued weight, a position and a wave-vector. The particle position changes continuously, according to the velocity determined by the wave-vector. New particles are created randomly and added to the system. The main result is that appropriate functionals of the process satisfy a weak form of the Wigner equation.
Citation: Wolfgang Wagner. A random cloud model for the Wigner equation. Kinetic & Related Models, 2016, 9 (1) : 217-235. doi: 10.3934/krm.2016.9.217
References:
[1]

L. Breiman, Probability,, Addison-Wesley Publishing Company, (1968).   Google Scholar

[2]

M. H. A. Davis, Markov Models and Optimization,, Chapman & Hall, (1993).  doi: 10.1007/978-1-4899-4483-2.  Google Scholar

[3]

I. M. Gamba, M. P. Gualdani and R. W. Sharp, An adaptable discontinuous Galerkin scheme for the Wigner-Fokker-Planck equation,, Commun. Math. Sci., 7 (2009), 635.  doi: 10.4310/CMS.2009.v7.n3.a7.  Google Scholar

[4]

I. M. Gamba, S. Rjasanow and W. Wagner, Direct simulation of the uniformly heated granular Boltzmann equation,, Math. Comput. Modelling, 42 (2005), 683.  doi: 10.1016/j.mcm.2004.02.047.  Google Scholar

[5]

T. M. M. Homolle and N. G. Hadjiconstantinou, A low-variance deviational simulation Monte Carlo for the Boltzmann equation,, J. Comput. Phys., 226 (2007), 2341.  doi: 10.1016/j.jcp.2007.07.006.  Google Scholar

[6]

P. A. Markowich, On the equivalence of the Schrödinger and the quantum Liouville equations,, Math. Methods Appl. Sci., 11 (1989), 459.  doi: 10.1002/mma.1670110404.  Google Scholar

[7]

P. A. Markowich and C. A. Ringhofer, An analysis of the quantum Liouville equation,, Z. Angew. Math. Mech., 69 (1989), 121.  doi: 10.1002/zamm.19890690303.  Google Scholar

[8]

M. Nedjalkov, H. Kosina, S. Selberherr, C. Ringhofer and D. K. Ferry, Unified particle approach to Wigner-Boltzmann transport in small semiconductor devices,, Phys. Rev. B, 70 (2004).  doi: 10.1103/PhysRevB.70.115319.  Google Scholar

[9]

R. I. A. Patterson and W. Wagner, A stochastic weighted particle method for coagulation-advection problems,, SIAM J. Sci. Comput., 34 (2012).  doi: 10.1137/110843319.  Google Scholar

[10]

R. I. A. Patterson, W. Wagner and M. Kraft, Stochastic weighted particle methods for population balance equations,, J. Comput. Phys., 230 (2011), 7456.  doi: 10.1016/j.jcp.2011.06.011.  Google Scholar

[11]

D. Querlioz and P. Dollfus, The Wigner Monte Carlo Method for Nanoelectronic Devices,, Wiley, (2010).  doi: 10.1002/9781118618479.  Google Scholar

[12]

G. A. Radtke, N. G. Hadjiconstantinou and W. Wagner, Low-noise Monte Carlo simulation of the variable hard sphere gas,, Phys. Fluids, 23 (2011), 1.  doi: 10.1063/1.3558887.  Google Scholar

[13]

S. Rjasanow and W. Wagner, A stochastic weighted particle method for the Boltzmann equation,, J. Comput. Phys., 124 (1996), 243.  doi: 10.1006/jcph.1996.0057.  Google Scholar

[14]

S. Rjasanow and W. Wagner, Simulation of rare events by the stochastic weighted particle method for the Boltzmann equation,, Math. Comput. Modelling, 33 (2001), 907.  doi: 10.1016/S0895-7177(00)00289-2.  Google Scholar

[15]

J. M. Sellier, M. Nedjalkov, I. Dimov and S. Selberherr, A benchmark study of the Wigner Monte Carlo method,, Monte Carlo Methods Appl., 20 (2014), 43.  doi: 10.1515/mcma-2013-0018.  Google Scholar

[16]

W. Wagner, Deviational particle Monte Carlo for the Boltzmann equation,, Monte Carlo Methods Appl., 14 (2008), 191.  doi: 10.1515/MCMA.2008.010.  Google Scholar

[17]

W. Wagner, A random cloud model for the Schrödinger equation,, Kinetic and Related Models, 7 (2014), 361.  doi: 10.3934/krm.2014.7.361.  Google Scholar

[18]

E. Wigner, On the quantum correction for thermodynamic equilibrium,, Phys. Rev., 40 (1932), 749.   Google Scholar

show all references

References:
[1]

L. Breiman, Probability,, Addison-Wesley Publishing Company, (1968).   Google Scholar

[2]

M. H. A. Davis, Markov Models and Optimization,, Chapman & Hall, (1993).  doi: 10.1007/978-1-4899-4483-2.  Google Scholar

[3]

I. M. Gamba, M. P. Gualdani and R. W. Sharp, An adaptable discontinuous Galerkin scheme for the Wigner-Fokker-Planck equation,, Commun. Math. Sci., 7 (2009), 635.  doi: 10.4310/CMS.2009.v7.n3.a7.  Google Scholar

[4]

I. M. Gamba, S. Rjasanow and W. Wagner, Direct simulation of the uniformly heated granular Boltzmann equation,, Math. Comput. Modelling, 42 (2005), 683.  doi: 10.1016/j.mcm.2004.02.047.  Google Scholar

[5]

T. M. M. Homolle and N. G. Hadjiconstantinou, A low-variance deviational simulation Monte Carlo for the Boltzmann equation,, J. Comput. Phys., 226 (2007), 2341.  doi: 10.1016/j.jcp.2007.07.006.  Google Scholar

[6]

P. A. Markowich, On the equivalence of the Schrödinger and the quantum Liouville equations,, Math. Methods Appl. Sci., 11 (1989), 459.  doi: 10.1002/mma.1670110404.  Google Scholar

[7]

P. A. Markowich and C. A. Ringhofer, An analysis of the quantum Liouville equation,, Z. Angew. Math. Mech., 69 (1989), 121.  doi: 10.1002/zamm.19890690303.  Google Scholar

[8]

M. Nedjalkov, H. Kosina, S. Selberherr, C. Ringhofer and D. K. Ferry, Unified particle approach to Wigner-Boltzmann transport in small semiconductor devices,, Phys. Rev. B, 70 (2004).  doi: 10.1103/PhysRevB.70.115319.  Google Scholar

[9]

R. I. A. Patterson and W. Wagner, A stochastic weighted particle method for coagulation-advection problems,, SIAM J. Sci. Comput., 34 (2012).  doi: 10.1137/110843319.  Google Scholar

[10]

R. I. A. Patterson, W. Wagner and M. Kraft, Stochastic weighted particle methods for population balance equations,, J. Comput. Phys., 230 (2011), 7456.  doi: 10.1016/j.jcp.2011.06.011.  Google Scholar

[11]

D. Querlioz and P. Dollfus, The Wigner Monte Carlo Method for Nanoelectronic Devices,, Wiley, (2010).  doi: 10.1002/9781118618479.  Google Scholar

[12]

G. A. Radtke, N. G. Hadjiconstantinou and W. Wagner, Low-noise Monte Carlo simulation of the variable hard sphere gas,, Phys. Fluids, 23 (2011), 1.  doi: 10.1063/1.3558887.  Google Scholar

[13]

S. Rjasanow and W. Wagner, A stochastic weighted particle method for the Boltzmann equation,, J. Comput. Phys., 124 (1996), 243.  doi: 10.1006/jcph.1996.0057.  Google Scholar

[14]

S. Rjasanow and W. Wagner, Simulation of rare events by the stochastic weighted particle method for the Boltzmann equation,, Math. Comput. Modelling, 33 (2001), 907.  doi: 10.1016/S0895-7177(00)00289-2.  Google Scholar

[15]

J. M. Sellier, M. Nedjalkov, I. Dimov and S. Selberherr, A benchmark study of the Wigner Monte Carlo method,, Monte Carlo Methods Appl., 20 (2014), 43.  doi: 10.1515/mcma-2013-0018.  Google Scholar

[16]

W. Wagner, Deviational particle Monte Carlo for the Boltzmann equation,, Monte Carlo Methods Appl., 14 (2008), 191.  doi: 10.1515/MCMA.2008.010.  Google Scholar

[17]

W. Wagner, A random cloud model for the Schrödinger equation,, Kinetic and Related Models, 7 (2014), 361.  doi: 10.3934/krm.2014.7.361.  Google Scholar

[18]

E. Wigner, On the quantum correction for thermodynamic equilibrium,, Phys. Rev., 40 (1932), 749.   Google Scholar

[1]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[2]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[3]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[4]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[5]

Djamel Aaid, Amel Noui, Özen Özer. Piecewise quadratic bounding functions for finding real roots of polynomials. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 63-73. doi: 10.3934/naco.2020015

[6]

Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257

[7]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[8]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[9]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[10]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[11]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[12]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[13]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[14]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[15]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[16]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[17]

Martin Heida, Stefan Neukamm, Mario Varga. Stochastic homogenization of $ \Lambda $-convex gradient flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 427-453. doi: 10.3934/dcdss.2020328

[18]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[19]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[20]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (39)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]