June  2016, 9(2): 237-249. doi: 10.3934/krm.2016.9.237

Approximating the $M_2$ method by the extended quadrature method of moments for radiative transfer in slab geometry

1. 

Department of Mathematics RWTH Aachen University, Aachen, Germany

2. 

CAPT, LMAM & School of Mathematical Sciences, Peking University, Beijing, China

3. 

School of Mathematical Sciences, Peking University, Beijing, China

Received  January 2015 Revised  October 2015 Published  March 2016

We consider the simplest member of the hierarchy of the extended quadrature method of moments (EQMOM), which gives equations for the zeroth-, first-, and second-order moments of the energy density of photons in the radiative transfer equations in slab geometry. First we show that the equations are well-defined for all moment vectors consistent with a nonnegative underlying distribution, and that the reconstruction is explicit and therefore computationally inexpensive. Second, we show that the resulting moment equations are hyperbolic. These two properties make this moment method quite similar to the attractive but far more expensive $M_2$ method. We confirm through numerical solutions to several benchmark problems that the methods give qualitatively similar results.
Citation: Graham W. Alldredge, Ruo Li, Weiming Li. Approximating the $M_2$ method by the extended quadrature method of moments for radiative transfer in slab geometry. Kinetic & Related Models, 2016, 9 (2) : 237-249. doi: 10.3934/krm.2016.9.237
References:
[1]

G. W. Alldredge, C. D. Hauck, D. P. O'Leary and A. L. Tits, Adaptive change of basis in entropy-based moment closures for linear kinetic equations,, Journal of Computational Physics, 258 (2014), 489. doi: 10.1016/j.jcp.2013.10.049. Google Scholar

[2]

G. W. Alldredge, C. D. Hauck and A. L. Tits, High-order entropy-based closures for linear transport in slab geometry ii: A computational study of the optimization problem,, SIAM Journal on Scientific Computing, 34 (2012). doi: 10.1137/11084772X. Google Scholar

[3]

C. Berthon, P. Charrier and B. Dubroca, An hllc scheme to solve the $M_1$ model of radiative transfer in two space dimensions,, Journal of Scientific Computing, 31 (2007), 347. doi: 10.1007/s10915-006-9108-6. Google Scholar

[4]

T. A. Brunner, Forms of Approximate Radiation Transport,, Tech. Rep SAND2002-1778, (2002), 2002. Google Scholar

[5]

T. A. Brunner and J. P. Holloway, One-dimensional riemann solvers and the maximum entropy closure,, Journal of Quantitative Spectroscopy and Radiative Transfer, 69 (2001), 543. doi: 10.1016/S0022-4073(00)00099-6. Google Scholar

[6]

R. Curto and L. Fialkow, Recursiveness, positivity and truncated moment problems,, Houston J. Math, 17 (1991), 603. Google Scholar

[7]

B. Dubroca and J.-L. Fuegas, Étude théorique et numérique d'une hiérarchie de modèles aus moments pour le transfert radiatif,, C.R. Acad. Sci. Paris, 329 (1999), 915. doi: 10.1016/S0764-4442(00)87499-6. Google Scholar

[8]

C. K. Garrett, C. Hauck and J. Hill, Optimization and large scale computation of an entropy-based moment closure,, Journal of Computational Physics, 302 (2015), 573. Google Scholar

[9]

C. D. Levermore, Moment closure hierarchies for kinetic theories,, Journal of Statistical Physics, 83 (1996), 1021. doi: 10.1007/BF02179552. Google Scholar

[10]

E. E. Lewis and W. F. Miller, Jr, Computational Methods in Neutron Transport,, John Wiley and Sons, (1984). Google Scholar

[11]

R. G. McClarren, J. P. Holloway and T. A. Brunner, On solutions to the $P_n$ equations for thermal radiative transfer,, Journal of Computational Physics, 227 (2008), 2864. doi: 10.1016/j.jcp.2007.11.027. Google Scholar

[12]

E. Olbrant, C. D. Hauck and M. Frank, A realizability-preserving discontinuous galerkin method for the m1 model of radiative transfer,, Journal of Computational Physics, 231 (2012), 5612. doi: 10.1016/j.jcp.2012.03.002. Google Scholar

[13]

G. C. Pomraning, The Equations of Radiation Hydrodynamics,, Courier Dover Publications, (1973). Google Scholar

[14]

B. Su and G. L. Olson, An analytical benchmark for non-equilibrium radiative transfer in an isotropically scattering medium,, Annals of Nuclear Energy, 24 (1997), 1035. doi: 10.1016/S0306-4549(96)00100-4. Google Scholar

[15]

E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction,, Springer Science & Business Media, (2009). doi: 10.1007/b79761. Google Scholar

[16]

V. Vikas, C. D. Hauck, Z. J. Wang and R. O. Fox, Radiation transport modeling using extended quadrature method of moments,, Journal of Computational Physics, 246 (2013), 221. doi: 10.1016/j.jcp.2013.03.028. Google Scholar

show all references

References:
[1]

G. W. Alldredge, C. D. Hauck, D. P. O'Leary and A. L. Tits, Adaptive change of basis in entropy-based moment closures for linear kinetic equations,, Journal of Computational Physics, 258 (2014), 489. doi: 10.1016/j.jcp.2013.10.049. Google Scholar

[2]

G. W. Alldredge, C. D. Hauck and A. L. Tits, High-order entropy-based closures for linear transport in slab geometry ii: A computational study of the optimization problem,, SIAM Journal on Scientific Computing, 34 (2012). doi: 10.1137/11084772X. Google Scholar

[3]

C. Berthon, P. Charrier and B. Dubroca, An hllc scheme to solve the $M_1$ model of radiative transfer in two space dimensions,, Journal of Scientific Computing, 31 (2007), 347. doi: 10.1007/s10915-006-9108-6. Google Scholar

[4]

T. A. Brunner, Forms of Approximate Radiation Transport,, Tech. Rep SAND2002-1778, (2002), 2002. Google Scholar

[5]

T. A. Brunner and J. P. Holloway, One-dimensional riemann solvers and the maximum entropy closure,, Journal of Quantitative Spectroscopy and Radiative Transfer, 69 (2001), 543. doi: 10.1016/S0022-4073(00)00099-6. Google Scholar

[6]

R. Curto and L. Fialkow, Recursiveness, positivity and truncated moment problems,, Houston J. Math, 17 (1991), 603. Google Scholar

[7]

B. Dubroca and J.-L. Fuegas, Étude théorique et numérique d'une hiérarchie de modèles aus moments pour le transfert radiatif,, C.R. Acad. Sci. Paris, 329 (1999), 915. doi: 10.1016/S0764-4442(00)87499-6. Google Scholar

[8]

C. K. Garrett, C. Hauck and J. Hill, Optimization and large scale computation of an entropy-based moment closure,, Journal of Computational Physics, 302 (2015), 573. Google Scholar

[9]

C. D. Levermore, Moment closure hierarchies for kinetic theories,, Journal of Statistical Physics, 83 (1996), 1021. doi: 10.1007/BF02179552. Google Scholar

[10]

E. E. Lewis and W. F. Miller, Jr, Computational Methods in Neutron Transport,, John Wiley and Sons, (1984). Google Scholar

[11]

R. G. McClarren, J. P. Holloway and T. A. Brunner, On solutions to the $P_n$ equations for thermal radiative transfer,, Journal of Computational Physics, 227 (2008), 2864. doi: 10.1016/j.jcp.2007.11.027. Google Scholar

[12]

E. Olbrant, C. D. Hauck and M. Frank, A realizability-preserving discontinuous galerkin method for the m1 model of radiative transfer,, Journal of Computational Physics, 231 (2012), 5612. doi: 10.1016/j.jcp.2012.03.002. Google Scholar

[13]

G. C. Pomraning, The Equations of Radiation Hydrodynamics,, Courier Dover Publications, (1973). Google Scholar

[14]

B. Su and G. L. Olson, An analytical benchmark for non-equilibrium radiative transfer in an isotropically scattering medium,, Annals of Nuclear Energy, 24 (1997), 1035. doi: 10.1016/S0306-4549(96)00100-4. Google Scholar

[15]

E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction,, Springer Science & Business Media, (2009). doi: 10.1007/b79761. Google Scholar

[16]

V. Vikas, C. D. Hauck, Z. J. Wang and R. O. Fox, Radiation transport modeling using extended quadrature method of moments,, Journal of Computational Physics, 246 (2013), 221. doi: 10.1016/j.jcp.2013.03.028. Google Scholar

[1]

Jessy Mallet, Stéphane Brull, Bruno Dubroca. General moment system for plasma physics based on minimum entropy principle. Kinetic & Related Models, 2015, 8 (3) : 533-558. doi: 10.3934/krm.2015.8.533

[2]

Florian Schneider. Second-order mixed-moment model with differentiable ansatz function in slab geometry. Kinetic & Related Models, 2018, 11 (5) : 1255-1276. doi: 10.3934/krm.2018049

[3]

Martin Frank, Cory D. Hauck, Edgar Olbrant. Perturbed, entropy-based closure for radiative transfer. Kinetic & Related Models, 2013, 6 (3) : 557-587. doi: 10.3934/krm.2013.6.557

[4]

Martin Frank, Benjamin Seibold. Optimal prediction for radiative transfer: A new perspective on moment closure. Kinetic & Related Models, 2011, 4 (3) : 717-733. doi: 10.3934/krm.2011.4.717

[5]

Florian Schneider, Jochen Kall, Graham Alldredge. A realizability-preserving high-order kinetic scheme using WENO reconstruction for entropy-based moment closures of linear kinetic equations in slab geometry. Kinetic & Related Models, 2016, 9 (1) : 193-215. doi: 10.3934/krm.2016.9.193

[6]

Zbigniew Banach, Wieslaw Larecki. Entropy-based mixed three-moment description of fermionic radiation transport in slab and spherical geometries. Kinetic & Related Models, 2017, 10 (4) : 879-900. doi: 10.3934/krm.2017035

[7]

J-F. Clouët, R. Sentis. Milne problem for non-grey radiative transfer. Kinetic & Related Models, 2009, 2 (2) : 345-362. doi: 10.3934/krm.2009.2.345

[8]

Arnaud Debussche, Sylvain De Moor, Julien Vovelle. Diffusion limit for the radiative transfer equation perturbed by a Wiener process. Kinetic & Related Models, 2015, 8 (3) : 467-492. doi: 10.3934/krm.2015.8.467

[9]

Grégoire Allaire, Zakaria Habibi. Second order corrector in the homogenization of a conductive-radiative heat transfer problem. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 1-36. doi: 10.3934/dcdsb.2013.18.1

[10]

Swann Marx, Tillmann Weisser, Didier Henrion, Jean Bernard Lasserre. A moment approach for entropy solutions to nonlinear hyperbolic PDEs. Mathematical Control & Related Fields, 2019, 0 (0) : 0-0. doi: 10.3934/mcrf.2019032

[11]

I-Kun Chen, Daisuke Kawagoe. Propagation of boundary-induced discontinuity in stationary radiative transfer and its application to the optical tomography. Inverse Problems & Imaging, 2019, 13 (2) : 337-351. doi: 10.3934/ipi.2019017

[12]

Thomas Leroy. Relativistic transfer equations: Comparison principle and convergence to the non-equilibrium regime. Kinetic & Related Models, 2015, 8 (4) : 725-763. doi: 10.3934/krm.2015.8.725

[13]

Byung-Hoon Hwang, Seok-Bae Yun. Stationary solutions to the boundary value problem for the relativistic BGK model in a slab. Kinetic & Related Models, 2019, 12 (4) : 749-764. doi: 10.3934/krm.2019029

[14]

Joachim Escher, Boris Kolev, Marcus Wunsch. The geometry of a vorticity model equation. Communications on Pure & Applied Analysis, 2012, 11 (4) : 1407-1419. doi: 10.3934/cpaa.2012.11.1407

[15]

Joseph A. Biello, Peter R. Kramer, Yuri Lvov. Stages of energy transfer in the FPU model. Conference Publications, 2003, 2003 (Special) : 113-122. doi: 10.3934/proc.2003.2003.113

[16]

Miroslava Růžičková, Irada Dzhalladova, Jitka Laitochová, Josef Diblík. Solution to a stochastic pursuit model using moment equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 473-485. doi: 10.3934/dcdsb.2018032

[17]

Eric A. Carlen, Maria C. Carvalho, Jonathan Le Roux, Michael Loss, Cédric Villani. Entropy and chaos in the Kac model. Kinetic & Related Models, 2010, 3 (1) : 85-122. doi: 10.3934/krm.2010.3.85

[18]

YunKyong Hyon. Hysteretic behavior of a moment-closure approximation for FENE model. Kinetic & Related Models, 2014, 7 (3) : 493-507. doi: 10.3934/krm.2014.7.493

[19]

Youngae Lee. Topological solutions in the Maxwell-Chern-Simons model with anomalous magnetic moment. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1293-1314. doi: 10.3934/dcds.2018053

[20]

Josephus Hulshof, Pascal Noble. Travelling waves for a combustion model coupled with hyperbolic radiation moment models. Discrete & Continuous Dynamical Systems - B, 2008, 10 (1) : 73-90. doi: 10.3934/dcdsb.2008.10.73

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]