June  2016, 9(2): 299-371. doi: 10.3934/krm.2016.9.299

Sharp regularity properties for the non-cutoff spatially homogeneous Boltzmann equation

1. 

Université de Rouen, UMR 6085-CNRS, Mathématiques, Avenue de l'Université, BP.12, 76801 Saint Etienne du Rouvray

2. 

School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China

3. 

Université de Rouen, UMR 6085-CNRS, Mathématiques, Avenue de l’Université, BP.12, 76801 Saint Etienne du Rouvray

Received  December 2014 Revised  October 2015 Published  March 2016

In this work, we study the Cauchy problem for the spatially homogeneous non-cutoff Boltzamnn equation with Maxwellian molecules. We prove that this Cauchy problem enjoys Gelfand-Shilov's regularizing effect, meaning that the smoothing properties are the same as the Cauchy problem defined by the evolution equation associated to a fractional harmonic oscillator. The power of the fractional exponent is exactly the same as the singular index of the non-cutoff collisional kernel of the Boltzmann equation. Therefore, we get the sharp regularity of solutions in the Gevrey class and also the sharp decay of solutions with an exponential weight. We also give a method to construct the solution of the Boltzmann equation by solving an infinite system of ordinary differential equations. The key tool is the spectral decomposition of linear and non-linear Boltzmann operators.
Citation: Léo Glangetas, Hao-Guang Li, Chao-Jiang Xu. Sharp regularity properties for the non-cutoff spatially homogeneous Boltzmann equation. Kinetic & Related Models, 2016, 9 (2) : 299-371. doi: 10.3934/krm.2016.9.299
References:
[1]

G. E. Andrews, R. Askey and R. Roy, Special Functions,, Cambridge University Press, (1999).  doi: 10.1017/CBO9781107325937.  Google Scholar

[2]

A. V. Bobylev, The theory of the nonlinear spatially uniform Boltzmann equation for Maxwell molecules,, Soviet Sci. Rev. Sect. C: Math. Phys., 7 (1988), 111.   Google Scholar

[3]

C. Cercignani, The Boltzmann Equation and Its Applications,, Applied Mathematical Sciences, (1988).  doi: 10.1007/978-1-4612-1039-9.  Google Scholar

[4]

L. Desvillettes, G. Furioli and E. Terraneo, Propagation of Gevrey regularity for solutions of Boltzmann equation for Maxwellian molecules,, Trans. Amer. Math. Soc., 361 (2009), 1731.  doi: 10.1090/S0002-9947-08-04574-1.  Google Scholar

[5]

L. Desvillettes and B. Wennberg, Smoothness of the solution of the spatially homogeneous Boltzmann equation without cutoff,, Comm. Partial Differential Equations, 29 (2004), 133.  doi: 10.1081/PDE-120028847.  Google Scholar

[6]

E. Dolera, On the computation of the spectrum of the linearized Boltzmann collision operator for Maxwellian molecules,, Boll. Unione Mat. Ital.(9), 4 (2011), 47.   Google Scholar

[7]

L. Glangetas and M. Najeme, Analytical regularizing effect for the radial homogeneous Boltzmann equation,, Kinet. Relat. Models, 6 (2013), 407.  doi: 10.3934/krm.2013.6.407.  Google Scholar

[8]

T. Gramchev , S. Pilipovié and L. Rodino, Classes of degenerate elliptic operators in Gelfand-Shilov spaces,, New Developments in Pseudo-Differential Operators, 189 (2009), 15.  doi: 10.1007/978-3-7643-8969-7_2.  Google Scholar

[9]

M. N. Jones, Spherical Harmonics and Tensors for Classical Field Theory,, UK: Research Studies Press, (1985).   Google Scholar

[10]

N. Lekrine and C.-J. Xu, Gevrey regularizing effect of the Cauchy problem for non-cutoff homogeneous Kac equation,, Kinet. Relat. Models, 2 (2009), 647.  doi: 10.3934/krm.2009.2.647.  Google Scholar

[11]

N. Lerner, Y. Morimoto, K. Pravda-Starov and C.-J. Xu, Spectral and phase space analysis of the linearized non-cutoff Kac collision operator,, J. Math. Pures Appl., 100 (2013), 832.  doi: 10.1016/j.matpur.2013.03.005.  Google Scholar

[12]

N. Lerner, Y. Morimoto, K. Pravda-Starov and C.-J. Xu, Phase space analysis and functional calculus for the linearized Landau and Boltzmann operators,, Kinet. Relat. Models, 6 (2013), 625.  doi: 10.3934/krm.2013.6.625.  Google Scholar

[13]

N. Lerner, Y. Morimoto, K. Pravda-Starov and C.-J. Xu, Gelfand-Shilov smoothing properties of the radially symmetric spatially homogeneous Boltzmann equation without angular cutoff,, Journal of Differential Equations, 256 (2014), 797.  doi: 10.1016/j.jde.2013.10.001.  Google Scholar

[14]

H.-G. Li, Cauchy problem for linearized non-cutoff Boltzmann equation with distribution initial datum,, Acta Mathematica Scientia, 35 (2015), 459.  doi: 10.1016/S0252-9602(15)60015-7.  Google Scholar

[15]

Y. Morimoto and S. Ukai, Gevrey smoothing effect of solutions for spatially homogeneous nonlinear Boltzmann equation without angular cutoff,, J. Pseudo-Differ. Oper., 1 (2010), 139.  doi: 10.1007/s11868-010-0008-z.  Google Scholar

[16]

Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang, Regularity of solutions to the spatially homogeneous Boltzmann equation without angular cutoff,, Discrete Contin. Dyn. Syst., 24 (2009), 187.  doi: 10.3934/dcds.2009.24.187.  Google Scholar

[17]

C. Müller, Analysis of Spherical Symmetries in Euclidean Spaces,, Springer, (1998).  doi: 10.1007/978-1-4612-0581-4.  Google Scholar

[18]

W. Rudin, Principles of Mathematical Analysis,, McGraw-Hill Book Co., (1964).   Google Scholar

[19]

G. Sansone, Orthogonal Functions,, Reprinted by Dover Publications 1991, (1991).   Google Scholar

[20]

J. C. Slater, Quantum Theory of Atomic Structure,, Vol. 1, (1960).  doi: 10.1063/1.3057555.  Google Scholar

[21]

S. Ukai, Local solutions in Gevrey classes to the nonlinear Boltzmann equation without cutff,, Japan. J. Appl. Math., 1 (1984), 141.  doi: 10.1007/BF03167864.  Google Scholar

[22]

C. Villani, A review of mathematical topics in collisional kinetic theory,, Handbook of Mathematical Fluid Dynamics, 1 (2002), 71.  doi: 10.1016/S1874-5792(02)80004-0.  Google Scholar

[23]

C. S. Wang Chang and G. E. Uhlenbeck, On The Propagation of Sound in Monoatomic Gases,, Univ. of Michigan Press, (1970).   Google Scholar

[24]

G. N. Watson, A Treatise On The Theory of Bessel Functions,, Cambridge university press, (1995).   Google Scholar

[25]

E. T. Whittaker and G. N. Watson, A Course of Modern Analysis,, Cambridge university press, (1996).  doi: 10.1017/CBO9780511608759.  Google Scholar

[26]

T.-F. Zhang and Z. Yin, Gevrey regularity of spatially homogeneous Boltzmann equation without cutoff,, J. Differential Equations, 253 (2012), 1172.  doi: 10.1016/j.jde.2012.04.023.  Google Scholar

show all references

References:
[1]

G. E. Andrews, R. Askey and R. Roy, Special Functions,, Cambridge University Press, (1999).  doi: 10.1017/CBO9781107325937.  Google Scholar

[2]

A. V. Bobylev, The theory of the nonlinear spatially uniform Boltzmann equation for Maxwell molecules,, Soviet Sci. Rev. Sect. C: Math. Phys., 7 (1988), 111.   Google Scholar

[3]

C. Cercignani, The Boltzmann Equation and Its Applications,, Applied Mathematical Sciences, (1988).  doi: 10.1007/978-1-4612-1039-9.  Google Scholar

[4]

L. Desvillettes, G. Furioli and E. Terraneo, Propagation of Gevrey regularity for solutions of Boltzmann equation for Maxwellian molecules,, Trans. Amer. Math. Soc., 361 (2009), 1731.  doi: 10.1090/S0002-9947-08-04574-1.  Google Scholar

[5]

L. Desvillettes and B. Wennberg, Smoothness of the solution of the spatially homogeneous Boltzmann equation without cutoff,, Comm. Partial Differential Equations, 29 (2004), 133.  doi: 10.1081/PDE-120028847.  Google Scholar

[6]

E. Dolera, On the computation of the spectrum of the linearized Boltzmann collision operator for Maxwellian molecules,, Boll. Unione Mat. Ital.(9), 4 (2011), 47.   Google Scholar

[7]

L. Glangetas and M. Najeme, Analytical regularizing effect for the radial homogeneous Boltzmann equation,, Kinet. Relat. Models, 6 (2013), 407.  doi: 10.3934/krm.2013.6.407.  Google Scholar

[8]

T. Gramchev , S. Pilipovié and L. Rodino, Classes of degenerate elliptic operators in Gelfand-Shilov spaces,, New Developments in Pseudo-Differential Operators, 189 (2009), 15.  doi: 10.1007/978-3-7643-8969-7_2.  Google Scholar

[9]

M. N. Jones, Spherical Harmonics and Tensors for Classical Field Theory,, UK: Research Studies Press, (1985).   Google Scholar

[10]

N. Lekrine and C.-J. Xu, Gevrey regularizing effect of the Cauchy problem for non-cutoff homogeneous Kac equation,, Kinet. Relat. Models, 2 (2009), 647.  doi: 10.3934/krm.2009.2.647.  Google Scholar

[11]

N. Lerner, Y. Morimoto, K. Pravda-Starov and C.-J. Xu, Spectral and phase space analysis of the linearized non-cutoff Kac collision operator,, J. Math. Pures Appl., 100 (2013), 832.  doi: 10.1016/j.matpur.2013.03.005.  Google Scholar

[12]

N. Lerner, Y. Morimoto, K. Pravda-Starov and C.-J. Xu, Phase space analysis and functional calculus for the linearized Landau and Boltzmann operators,, Kinet. Relat. Models, 6 (2013), 625.  doi: 10.3934/krm.2013.6.625.  Google Scholar

[13]

N. Lerner, Y. Morimoto, K. Pravda-Starov and C.-J. Xu, Gelfand-Shilov smoothing properties of the radially symmetric spatially homogeneous Boltzmann equation without angular cutoff,, Journal of Differential Equations, 256 (2014), 797.  doi: 10.1016/j.jde.2013.10.001.  Google Scholar

[14]

H.-G. Li, Cauchy problem for linearized non-cutoff Boltzmann equation with distribution initial datum,, Acta Mathematica Scientia, 35 (2015), 459.  doi: 10.1016/S0252-9602(15)60015-7.  Google Scholar

[15]

Y. Morimoto and S. Ukai, Gevrey smoothing effect of solutions for spatially homogeneous nonlinear Boltzmann equation without angular cutoff,, J. Pseudo-Differ. Oper., 1 (2010), 139.  doi: 10.1007/s11868-010-0008-z.  Google Scholar

[16]

Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang, Regularity of solutions to the spatially homogeneous Boltzmann equation without angular cutoff,, Discrete Contin. Dyn. Syst., 24 (2009), 187.  doi: 10.3934/dcds.2009.24.187.  Google Scholar

[17]

C. Müller, Analysis of Spherical Symmetries in Euclidean Spaces,, Springer, (1998).  doi: 10.1007/978-1-4612-0581-4.  Google Scholar

[18]

W. Rudin, Principles of Mathematical Analysis,, McGraw-Hill Book Co., (1964).   Google Scholar

[19]

G. Sansone, Orthogonal Functions,, Reprinted by Dover Publications 1991, (1991).   Google Scholar

[20]

J. C. Slater, Quantum Theory of Atomic Structure,, Vol. 1, (1960).  doi: 10.1063/1.3057555.  Google Scholar

[21]

S. Ukai, Local solutions in Gevrey classes to the nonlinear Boltzmann equation without cutff,, Japan. J. Appl. Math., 1 (1984), 141.  doi: 10.1007/BF03167864.  Google Scholar

[22]

C. Villani, A review of mathematical topics in collisional kinetic theory,, Handbook of Mathematical Fluid Dynamics, 1 (2002), 71.  doi: 10.1016/S1874-5792(02)80004-0.  Google Scholar

[23]

C. S. Wang Chang and G. E. Uhlenbeck, On The Propagation of Sound in Monoatomic Gases,, Univ. of Michigan Press, (1970).   Google Scholar

[24]

G. N. Watson, A Treatise On The Theory of Bessel Functions,, Cambridge university press, (1995).   Google Scholar

[25]

E. T. Whittaker and G. N. Watson, A Course of Modern Analysis,, Cambridge university press, (1996).  doi: 10.1017/CBO9780511608759.  Google Scholar

[26]

T.-F. Zhang and Z. Yin, Gevrey regularity of spatially homogeneous Boltzmann equation without cutoff,, J. Differential Equations, 253 (2012), 1172.  doi: 10.1016/j.jde.2012.04.023.  Google Scholar

[1]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[2]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[3]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[4]

Nguyen Thi Kim Son, Nguyen Phuong Dong, Le Hoang Son, Alireza Khastan, Hoang Viet Long. Complete controllability for a class of fractional evolution equations with uncertainty. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020104

[5]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[6]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[7]

Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020452

[8]

Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257

[9]

Yolanda Guerrero–Sánchez, Muhammad Umar, Zulqurnain Sabir, Juan L. G. Guirao, Muhammad Asif Zahoor Raja. Solving a class of biological HIV infection model of latently infected cells using heuristic approach. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020431

[10]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[11]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[12]

Marc Homs-Dones. A generalization of the Babbage functional equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 899-919. doi: 10.3934/dcds.2020303

[13]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[14]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[15]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[16]

Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265

[17]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[18]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[19]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[20]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (45)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]