June  2016, 9(2): 373-391. doi: 10.3934/krm.2016.9.373

An accurate and efficient discrete formulation of aggregation population balance equation

1. 

Department of Mathematics, Indian Institute of Technology Kharagpur, 721302 Kharagpur, India, India

2. 

Chair of Thermal Process Engineering, Otto-von-Guericke University Magdeburg, D-39106 Magdeburg, Germany

Received  January 2015 Revised  September 2015 Published  March 2016

An efficient and accurate discretization method based on a finite volume approach is presented for solving aggregation population balance equation. The principle of the method lies in the introduction of an extra feature that is beyond the essential requirement of mass conservation. The extra feature controls more precisely the behaviour of a chosen integral property of the particle size distribution that does not remain constant like mass, but changes with time. The new method is compared to the finite volume scheme recently proposed by Forestier and Mancini (SIAM J. Sci. Comput., 34, B840 - B860). It retains all the advantages of this scheme, such as simplicity, generality to apply on uniform or nonuniform meshes and computational efficiency, and improves the prediction of the complete particle size distribution as well as of its moments. The numerical results of particle size distribution using the previous finite volume method are consistently overpredicting, which is reflected in the form of the diverging behaviour of second or higher moments for large extent of aggregation. However, the new method controls the growth of higher moments very well and predicts the zeroth moment with high accuracy. Consequently, the new method becomes a powerful tool for the computation of gelling problems. The scheme is validated and compared with the existing finite volume method against several aggregation problems for suitably selected aggregation kernels, including analytically tractable and physically relevant kernels.
Citation: Jitendra Kumar, Gurmeet Kaur, Evangelos Tsotsas. An accurate and efficient discrete formulation of aggregation population balance equation. Kinetic & Related Models, 2016, 9 (2) : 373-391. doi: 10.3934/krm.2016.9.373
References:
[1]

M. Attarakih, C. Drumm and H. J. Bart, Solution of the population balance equation using the sectional quadrature method of moments,, (SQMOM), 64 (2009), 742.   Google Scholar

[2]

J. C. Barrett and J. S. Jheeta, Improving the accuracy of the moments method for solving the aerosol general dynamic equation,, Journal of Aerosol Science, 27 (1996), 1135.  doi: 10.1016/0021-8502(96)00059-6.  Google Scholar

[3]

M. K. Bennett and S. Rohani, Solution of population balance equations with a new combined Lax-Wendroff/Crank-Nicholson method,, Chemical Engineering Science, 56 (2001), 6623.  doi: 10.1016/S0009-2509(01)00314-1.  Google Scholar

[4]

S. Bove, T. Solberg and B. H. Hjertager, A novel algorithm for solving population balance equations: The parallel parent and daughter classes. Derivation, analysis and testing,, Chemical Engineering Science, 60 (2005), 1449.  doi: 10.1016/j.ces.2004.10.021.  Google Scholar

[5]

A. Eibeck and W. Wagner, Stochastic particle approximations for Smoluchowski's coagulation equation,, The Annals of Applied Probability, 11 (2001), 1137.  doi: 10.1214/aoap/1015345398.  Google Scholar

[6]

M. H. Ernst, R. M. Ziff and E. M. Hendriks, Coagulation processes with a phase transition,, Journal of Colloid and Interface Science, 97 (1984), 266.  doi: 10.1016/0021-9797(84)90292-3.  Google Scholar

[7]

F. Filbet and P. Laurençot, Numerical simulation of the Smoluchowski equation,, SIAM Journal of Scientific Computing, 25 (2004), 2004.  doi: 10.1137/S1064827503429132.  Google Scholar

[8]

L. Forestier and S. Mancini, A Finite volume preserving scheme on nonuniform meshes and for multidimensional coalescence,, SIAM Journal of Scientific Computing, 34 (2012).  doi: 10.1137/110847998.  Google Scholar

[9]

M. J. Hounslow, R. L. Ryall and V. R. Marshall, A discretized population balance for nucleation, growth and aggregation,, AIChE Journal, 38 (1988), 1821.  doi: 10.1002/aic.690341108.  Google Scholar

[10]

H. M. Hulburt and S. Katz, Some problems in particle technology: A statistical mechanical formulation,, Chemical Engineering Science, 19 (1964), 555.  doi: 10.1016/0009-2509(64)85047-8.  Google Scholar

[11]

Y. P. Kim and J. H. Seinfeld, Simulation of multicomponent aerosol dynamics,, Journal of Colloid and Interface Science, 149 (1992), 425.  doi: 10.1016/0021-9797(92)90432-L.  Google Scholar

[12]

M. Kostoglou, Extended cell average technique for the solution of coagulation equation,, Journal of Colloid and Interface Science, 306 (2007), 72.  doi: 10.1016/j.jcis.2006.10.044.  Google Scholar

[13]

R. Kumar, J. Kumar and G. Warnecke, Moment preserving finite volume schemes for solving population balance equations incorporating aggregation, breakage, growth and source terms,, Mathematical Models and Methods in Applied Sciences, 23 (2013), 1235.  doi: 10.1142/S0218202513500085.  Google Scholar

[14]

J. Kumar, M. Peglow, G. Warnecke, S. Heinrich and L. Mörl, A discretized model for tracer population balance equation: Improved accuracy and convergence,, Computers and Chemical Engineering, 30 (2006), 1278.  doi: 10.1016/j.compchemeng.2006.02.021.  Google Scholar

[15]

J. Kumar, M. Peglow, G. Warnecke, S. Heinrich and L. Mörl, Improved accuracy and convergence of discretized population balance for aggregation: The cell average technique,, Chemical Engineering Science, 61 (2006), 3327.  doi: 10.1016/j.ces.2005.12.014.  Google Scholar

[16]

J. Kumar, M. Peglow, G. Warnecke and S. Heinrich, An efficient numerical technique for solving population balance equation involving aggregation, breakage, growth and nucleation,, Powder Technology, 182 (2008), 81.   Google Scholar

[17]

S. Kumar and D. Ramkrishna, On the solution of population balance equations by discretization-I. A fixed pivot technique,, Chemical Engineering Science, 51 (1995), 1311.  doi: 10.1016/0009-2509(96)88489-2.  Google Scholar

[18]

S. Kumar and D. Ramkrishna, On the solution of population balance equations by discretization - II. A moving pivot technique,, Chemical Engineering Science, 51 (1996), 1333.  doi: 10.1016/0009-2509(95)00355-X.  Google Scholar

[19]

J. D. Litster, D. J. Smit and M. J. Hounslow, Adjustable discretized population balance for growth and aggregation,, AIChE Journal, 41 (1995), 591.   Google Scholar

[20]

G. Madras and B. J. McCoy, Reversible crystal growth-dissolution and aggregation-breakage: Numerical and moment solutions for population balance equations,, Powder Technology, 143-144 (2004), 143.  doi: 10.1016/j.powtec.2004.04.022.  Google Scholar

[21]

A. W. Mahoney and D. Ramkrishna, Efficient solution of population balance equations with discontinuities by finite elements,, Chemical Engineering Science, 57 (2002), 1107.  doi: 10.1016/S0009-2509(01)00427-4.  Google Scholar

[22]

D. L. Marchisio and R. O. Fox, Solution of population balance equations using the direct quadrature method of moments,, Journal of Aerosol Science, 36 (2005), 43.  doi: 10.1016/j.jaerosci.2004.07.009.  Google Scholar

[23]

M. Nicmanis and M. J. Hounslow, A finite element analysis of the steady state population balance equation for particulate systems: Aggregation and growth,, Computers and Chemical Engineering, 20 (1996).  doi: 10.1016/0098-1354(96)00054-3.  Google Scholar

[24]

V. N. Piskunov and A. I. Golubev, The generalized approximation method for modeling coagulation kinetics-Part 1: Justification and implimentation of the method,, Journal of Aerosol Science, 33 (2002), 51.  doi: 10.1016/S0021-8502(01)00073-8.  Google Scholar

[25]

V. N. Piskunov, A. I. Golubev, J. C. Barrett and N. A. Ismailova, The generalized approximation method for modeling coagulation kinetics-Part 2: Comparison with other methods,, Journal of Aerosol Science, 33 (2002), 65.  doi: 10.1016/S0021-8502(01)00072-6.  Google Scholar

[26]

S. Qamar and G. Warnecke, Numerical solution of population balance equations for nucleation, growth and aggregation processes,, Computers and Chemical Engineering, 31 (2007), 1576.  doi: 10.1016/j.compchemeng.2007.01.006.  Google Scholar

[27]

D. Ramkrishna, Population Balances. Theory and Applications to Particulate Systems in Engineering,, $1^{st}$ edition, (2000).   Google Scholar

[28]

S. Rigopoulos and A. G. Jones, Finite-element scheme for solution of the dynamic population balance equation,, AIChE Journal, 49 (2003), 1127.  doi: 10.1002/aic.690490507.  Google Scholar

[29]

W. T. Scott, Analytic studies of cloud droplet coalescence,, Analytic Studies of Cloud Droplet Coalescence, 25 (1968), 54.  doi: 10.1175/1520-0469(1968)025<0054:ASOCDC>2.0.CO;2.  Google Scholar

[30]

D. J. Smit, M. J. Hounslow and W. R. Paterson, Aggregation and gelation-I. Analytical solutions for CST and batch operation,, Chemical Engineering Science, 49 (1994), 1025.  doi: 10.1016/0009-2509(94)80009-X.  Google Scholar

[31]

D. Verkoeijen, G. A. Pouw, G. M. H. Meesters and B. Scarlett, Population balances for particulate processes-a volume approach,, Chemical Engineering Science, 57 (2002), 2287.  doi: 10.1016/S0009-2509(02)00118-5.  Google Scholar

[32]

E. Wynn, Improved accuracy and convergence of discretized population balance of Lister et al,, AIChE Journal, 42 (1996), 2084.  doi: 10.1002/aic.690420729.  Google Scholar

show all references

References:
[1]

M. Attarakih, C. Drumm and H. J. Bart, Solution of the population balance equation using the sectional quadrature method of moments,, (SQMOM), 64 (2009), 742.   Google Scholar

[2]

J. C. Barrett and J. S. Jheeta, Improving the accuracy of the moments method for solving the aerosol general dynamic equation,, Journal of Aerosol Science, 27 (1996), 1135.  doi: 10.1016/0021-8502(96)00059-6.  Google Scholar

[3]

M. K. Bennett and S. Rohani, Solution of population balance equations with a new combined Lax-Wendroff/Crank-Nicholson method,, Chemical Engineering Science, 56 (2001), 6623.  doi: 10.1016/S0009-2509(01)00314-1.  Google Scholar

[4]

S. Bove, T. Solberg and B. H. Hjertager, A novel algorithm for solving population balance equations: The parallel parent and daughter classes. Derivation, analysis and testing,, Chemical Engineering Science, 60 (2005), 1449.  doi: 10.1016/j.ces.2004.10.021.  Google Scholar

[5]

A. Eibeck and W. Wagner, Stochastic particle approximations for Smoluchowski's coagulation equation,, The Annals of Applied Probability, 11 (2001), 1137.  doi: 10.1214/aoap/1015345398.  Google Scholar

[6]

M. H. Ernst, R. M. Ziff and E. M. Hendriks, Coagulation processes with a phase transition,, Journal of Colloid and Interface Science, 97 (1984), 266.  doi: 10.1016/0021-9797(84)90292-3.  Google Scholar

[7]

F. Filbet and P. Laurençot, Numerical simulation of the Smoluchowski equation,, SIAM Journal of Scientific Computing, 25 (2004), 2004.  doi: 10.1137/S1064827503429132.  Google Scholar

[8]

L. Forestier and S. Mancini, A Finite volume preserving scheme on nonuniform meshes and for multidimensional coalescence,, SIAM Journal of Scientific Computing, 34 (2012).  doi: 10.1137/110847998.  Google Scholar

[9]

M. J. Hounslow, R. L. Ryall and V. R. Marshall, A discretized population balance for nucleation, growth and aggregation,, AIChE Journal, 38 (1988), 1821.  doi: 10.1002/aic.690341108.  Google Scholar

[10]

H. M. Hulburt and S. Katz, Some problems in particle technology: A statistical mechanical formulation,, Chemical Engineering Science, 19 (1964), 555.  doi: 10.1016/0009-2509(64)85047-8.  Google Scholar

[11]

Y. P. Kim and J. H. Seinfeld, Simulation of multicomponent aerosol dynamics,, Journal of Colloid and Interface Science, 149 (1992), 425.  doi: 10.1016/0021-9797(92)90432-L.  Google Scholar

[12]

M. Kostoglou, Extended cell average technique for the solution of coagulation equation,, Journal of Colloid and Interface Science, 306 (2007), 72.  doi: 10.1016/j.jcis.2006.10.044.  Google Scholar

[13]

R. Kumar, J. Kumar and G. Warnecke, Moment preserving finite volume schemes for solving population balance equations incorporating aggregation, breakage, growth and source terms,, Mathematical Models and Methods in Applied Sciences, 23 (2013), 1235.  doi: 10.1142/S0218202513500085.  Google Scholar

[14]

J. Kumar, M. Peglow, G. Warnecke, S. Heinrich and L. Mörl, A discretized model for tracer population balance equation: Improved accuracy and convergence,, Computers and Chemical Engineering, 30 (2006), 1278.  doi: 10.1016/j.compchemeng.2006.02.021.  Google Scholar

[15]

J. Kumar, M. Peglow, G. Warnecke, S. Heinrich and L. Mörl, Improved accuracy and convergence of discretized population balance for aggregation: The cell average technique,, Chemical Engineering Science, 61 (2006), 3327.  doi: 10.1016/j.ces.2005.12.014.  Google Scholar

[16]

J. Kumar, M. Peglow, G. Warnecke and S. Heinrich, An efficient numerical technique for solving population balance equation involving aggregation, breakage, growth and nucleation,, Powder Technology, 182 (2008), 81.   Google Scholar

[17]

S. Kumar and D. Ramkrishna, On the solution of population balance equations by discretization-I. A fixed pivot technique,, Chemical Engineering Science, 51 (1995), 1311.  doi: 10.1016/0009-2509(96)88489-2.  Google Scholar

[18]

S. Kumar and D. Ramkrishna, On the solution of population balance equations by discretization - II. A moving pivot technique,, Chemical Engineering Science, 51 (1996), 1333.  doi: 10.1016/0009-2509(95)00355-X.  Google Scholar

[19]

J. D. Litster, D. J. Smit and M. J. Hounslow, Adjustable discretized population balance for growth and aggregation,, AIChE Journal, 41 (1995), 591.   Google Scholar

[20]

G. Madras and B. J. McCoy, Reversible crystal growth-dissolution and aggregation-breakage: Numerical and moment solutions for population balance equations,, Powder Technology, 143-144 (2004), 143.  doi: 10.1016/j.powtec.2004.04.022.  Google Scholar

[21]

A. W. Mahoney and D. Ramkrishna, Efficient solution of population balance equations with discontinuities by finite elements,, Chemical Engineering Science, 57 (2002), 1107.  doi: 10.1016/S0009-2509(01)00427-4.  Google Scholar

[22]

D. L. Marchisio and R. O. Fox, Solution of population balance equations using the direct quadrature method of moments,, Journal of Aerosol Science, 36 (2005), 43.  doi: 10.1016/j.jaerosci.2004.07.009.  Google Scholar

[23]

M. Nicmanis and M. J. Hounslow, A finite element analysis of the steady state population balance equation for particulate systems: Aggregation and growth,, Computers and Chemical Engineering, 20 (1996).  doi: 10.1016/0098-1354(96)00054-3.  Google Scholar

[24]

V. N. Piskunov and A. I. Golubev, The generalized approximation method for modeling coagulation kinetics-Part 1: Justification and implimentation of the method,, Journal of Aerosol Science, 33 (2002), 51.  doi: 10.1016/S0021-8502(01)00073-8.  Google Scholar

[25]

V. N. Piskunov, A. I. Golubev, J. C. Barrett and N. A. Ismailova, The generalized approximation method for modeling coagulation kinetics-Part 2: Comparison with other methods,, Journal of Aerosol Science, 33 (2002), 65.  doi: 10.1016/S0021-8502(01)00072-6.  Google Scholar

[26]

S. Qamar and G. Warnecke, Numerical solution of population balance equations for nucleation, growth and aggregation processes,, Computers and Chemical Engineering, 31 (2007), 1576.  doi: 10.1016/j.compchemeng.2007.01.006.  Google Scholar

[27]

D. Ramkrishna, Population Balances. Theory and Applications to Particulate Systems in Engineering,, $1^{st}$ edition, (2000).   Google Scholar

[28]

S. Rigopoulos and A. G. Jones, Finite-element scheme for solution of the dynamic population balance equation,, AIChE Journal, 49 (2003), 1127.  doi: 10.1002/aic.690490507.  Google Scholar

[29]

W. T. Scott, Analytic studies of cloud droplet coalescence,, Analytic Studies of Cloud Droplet Coalescence, 25 (1968), 54.  doi: 10.1175/1520-0469(1968)025<0054:ASOCDC>2.0.CO;2.  Google Scholar

[30]

D. J. Smit, M. J. Hounslow and W. R. Paterson, Aggregation and gelation-I. Analytical solutions for CST and batch operation,, Chemical Engineering Science, 49 (1994), 1025.  doi: 10.1016/0009-2509(94)80009-X.  Google Scholar

[31]

D. Verkoeijen, G. A. Pouw, G. M. H. Meesters and B. Scarlett, Population balances for particulate processes-a volume approach,, Chemical Engineering Science, 57 (2002), 2287.  doi: 10.1016/S0009-2509(02)00118-5.  Google Scholar

[32]

E. Wynn, Improved accuracy and convergence of discretized population balance of Lister et al,, AIChE Journal, 42 (1996), 2084.  doi: 10.1002/aic.690420729.  Google Scholar

[1]

Matúš Tibenský, Angela Handlovičová. Convergence analysis of the discrete duality finite volume scheme for the regularised Heston model. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1181-1195. doi: 10.3934/dcdss.2020226

[2]

Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29 (1) : 1859-1880. doi: 10.3934/era.2020095

[3]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[4]

Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097

[5]

Divine Wanduku. Finite- and multi-dimensional state representations and some fundamental asymptotic properties of a family of nonlinear multi-population models for HIV/AIDS with ART treatment and distributed delays. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021005

[6]

Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089

[7]

Wenya Qi, Padmanabhan Seshaiyer, Junping Wang. A four-field mixed finite element method for Biot's consolidation problems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020127

[8]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 61-79. doi: 10.3934/dcdsb.2020351

[9]

Hongbo Guan, Yong Yang, Huiqing Zhu. A nonuniform anisotropic FEM for elliptic boundary layer optimal control problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1711-1722. doi: 10.3934/dcdsb.2020179

[10]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[11]

Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020391

[12]

Yao Nie, Jia Yuan. The Littlewood-Paley $ pth $-order moments in three-dimensional MHD turbulence. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020397

[13]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[14]

Kimie Nakashima. Indefinite nonlinear diffusion problem in population genetics. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3837-3855. doi: 10.3934/dcds.2020169

[15]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[16]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[17]

Mugen Huang, Moxun Tang, Jianshe Yu, Bo Zheng. A stage structured model of delay differential equations for Aedes mosquito population suppression. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3467-3484. doi: 10.3934/dcds.2020042

[18]

Mengting Fang, Yuanshi Wang, Mingshu Chen, Donald L. DeAngelis. Asymptotic population abundance of a two-patch system with asymmetric diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3411-3425. doi: 10.3934/dcds.2020031

[19]

Attila Dénes, Gergely Röst. Single species population dynamics in seasonal environment with short reproduction period. Communications on Pure & Applied Analysis, 2021, 20 (2) : 755-762. doi: 10.3934/cpaa.2020288

[20]

P. K. Jha, R. Lipton. Finite element approximation of nonlocal dynamic fracture models. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1675-1710. doi: 10.3934/dcdsb.2020178

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (130)
  • HTML views (0)
  • Cited by (17)

Other articles
by authors

[Back to Top]