June  2016, 9(2): 393-405. doi: 10.3934/krm.2016.9.393

Global solutions to the relativistic Vlasov-Poisson-Fokker-Planck system

1. 

School of Mathematics and Information Science, Guangzhou University, Guangzhou 510006, China

2. 

School of Mathematical Sciences, South China Normal University, Guangzhou 510631

Received  July 2015 Revised  September 2015 Published  March 2016

Global solutions to the relativistic Vlasov-Poisson-Fokker-Planck system near the relativistic Maxwellian are constructed based on an approach by combining the compensating function and energy method. In addition, an exponential rate in time of the solution to its equilibrium is obtained.
Citation: Lan Luo, Hongjun Yu. Global solutions to the relativistic Vlasov-Poisson-Fokker-Planck system. Kinetic and Related Models, 2016, 9 (2) : 393-405. doi: 10.3934/krm.2016.9.393
References:
[1]

M. Bostan and Th. Goudon, Low field regime for the relativistic Vlasov-Maxwell-Fokker-Planck system: the one and one half dimensional case, Kinet. Relat. Models, 1 (2008), 139-170. doi: 10.3934/krm.2008.1.139.

[2]

F. Bouchut, Existence and uniqueness of a global smooth solution for the Vlasov-Poisson-Fokker-Planck system in three dimensions, J. Func. Anal., 111 (1993), 239-258. doi: 10.1006/jfan.1993.1011.

[3]

A. Carpio, Long-time behaviour for solutions of the Vlasov-Poisson-Fokker-Planck equation, Math. Methods Appl. Sci., 21 (1998), 985-1014. doi: 10.1002/(SICI)1099-1476(19980725)21:11<985::AID-MMA919>3.0.CO;2-B.

[4]

J.-A. Carrillo and J. Soler, On the initial value problem for the Vlasov-Poisson-Fokker-Planck system with initial data in $L^p$ spaces, Math. Methods Appl. Sci., 18 (1995), 825-839. doi: 10.1002/mma.1670181006.

[5]

J.-A. Carrillo, J. Soler and J. L. Vazquez, Asymptotic behaviour and self-similarity for the three-dimensional Vlasov-Poisson-Fokker-Planck system, J. Func. Anal., 141 (1996), 99-132. doi: 10.1006/jfan.1996.0123.

[6]

M. Chae, The global classical solution of the Vlasov-Maxwell-Fokker-Planck system near Maxwellian, Math. Models Methods Appl. Sci., 21 (2011), 1007-1025. doi: 10.1142/S0218202511005222.

[7]

R. DiPerna and P.-L. Lions, Global weak solutions of kinetic equations, Rend. Sem. Mat. Univ. Politec. Torino, 46 (1988), 259-288.

[8]

R.-J. Duan and S.-Q. Liu, The Vlasov-Poisson-Boltzmann system without angular cutoff, Comm. Math. Phys., 324 (2013), 1-45.

[9]

R.-J. Duan and R.-M. Strain, Optimal time decay of the Vlasov-Poisson-Boltzmann system in $R^3$, Arch. Ration. Mech. Anal., 199 (2011), 291-328. doi: 10.1007/s00205-010-0318-6.

[10]

R.-J. Duan, T. Yang and H.-J. Zhao, The Vlasov-Poisson-Boltzmann system in the whole space: The hard potential case, J. Differential Equations, 252 (2012), 6356-6386. doi: 10.1016/j.jde.2012.03.012.

[11]

R. T. Glassey, The Cauchy Problem in Kinetic Theory, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1996. doi: 10.1137/1.9781611971477.

[12]

Y. Guo, The Vlasov-Poisson-Boltzmann system near Maxwellians, Comm. Pure Appl. Math., 55 (2002), 1104-1135. doi: 10.1002/cpa.10040.

[13]

L. Hsiao, F.-C. Li and S. Wang, Combined quasineutral and inviscid limit of the Vlasov-Poisson-Fokker-Planck system, Commun. Pure Appl. Anal., 7 (2008), 579-589. doi: 10.3934/cpaa.2008.7.579.

[14]

H.-J Hwang and J. Jang, On the Vlasov-Poisson-Fokker-Planck equation near Maxwellian, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 681-691. doi: 10.3934/dcdsb.2013.18.681.

[15]

S. Kawashima, The Boltzmann equation and thirteen moments, Japan J. Appl. Math., 7 (1990), 301-320. doi: 10.1007/BF03167846.

[16]

R. Lai, On the one and one-half dimensional relativistic Vlasov-Maxwell-Fokker-Planck system with non-vanishing viscosity, Math. Meth. Appl. Sci., 21 (1998), 1287-1296. doi: 10.1002/(SICI)1099-1476(19980925)21:14<1287::AID-MMA996>3.0.CO;2-G.

[17]

S.-Q. Liu and H.-J. Zhao, Optimal large-time decay of the relativistic Landau-Maxwell system, J. Differential Equations, 256 (2014), 832-857. doi: 10.1016/j.jde.2013.10.004.

[18]

B. O'Dwyer and H.-D. Victory Jr., On classical solutions of the Vlasov-Poisson-Fokker-Planck system, Indiana Univ. Math. J., 39 (1990), 105-156. doi: 10.1512/iumj.1990.39.39009.

[19]

G. Rein and J. Weckler, Generic global classical solutions of the Vlasov-Fokker-Planck-Poisson system in three dimensions, J. Differential Equations, 99 (1992), 59-77. doi: 10.1016/0022-0396(92)90135-A.

[20]

R.-M. Strain and Y. Guo, Stability of the relativistic Maxwellian in a collisional plasma, Comm. Math. Phys., 251 (2004), 263-320. doi: 10.1007/s00220-004-1151-2.

[21]

H.-D. Victory Jr., On the existence of global weak solutions for Vlasov-Poisson-Fokker-Planck systems, J. Math. Anal. Appl., 160 (1991), 525-555. doi: 10.1016/0022-247X(91)90324-S.

[22]

C. Villani, Hypocoercivity, Memoirs Amer. Math. Soc., 202 (2009), iv+141 pp. doi: 10.1090/S0065-9266-09-00567-5.

[23]

T. Yang, and H.-J. Yu, Hypocoercivity of the relativistic Boltzmann and Landau equations in the whole space, J. Differential Equations, 248 (2010), 1518-1560. doi: 10.1016/j.jde.2009.11.027.

[24]

T. Yang and H.-J. Yu, Global classical solutions for the Vlasov-Maxwell-Fokker-Planck system, SIAM J. Math. Anal., 42 (2010), 459-488. doi: 10.1137/090755796.

[25]

T. Yang and H.-J. Zhao, Global existence of classical solutions to the Vlasov-Poisson-Boltzmann system, Comm. Math. Phys., 268 (2006), 569-605. doi: 10.1007/s00220-006-0103-4.

show all references

References:
[1]

M. Bostan and Th. Goudon, Low field regime for the relativistic Vlasov-Maxwell-Fokker-Planck system: the one and one half dimensional case, Kinet. Relat. Models, 1 (2008), 139-170. doi: 10.3934/krm.2008.1.139.

[2]

F. Bouchut, Existence and uniqueness of a global smooth solution for the Vlasov-Poisson-Fokker-Planck system in three dimensions, J. Func. Anal., 111 (1993), 239-258. doi: 10.1006/jfan.1993.1011.

[3]

A. Carpio, Long-time behaviour for solutions of the Vlasov-Poisson-Fokker-Planck equation, Math. Methods Appl. Sci., 21 (1998), 985-1014. doi: 10.1002/(SICI)1099-1476(19980725)21:11<985::AID-MMA919>3.0.CO;2-B.

[4]

J.-A. Carrillo and J. Soler, On the initial value problem for the Vlasov-Poisson-Fokker-Planck system with initial data in $L^p$ spaces, Math. Methods Appl. Sci., 18 (1995), 825-839. doi: 10.1002/mma.1670181006.

[5]

J.-A. Carrillo, J. Soler and J. L. Vazquez, Asymptotic behaviour and self-similarity for the three-dimensional Vlasov-Poisson-Fokker-Planck system, J. Func. Anal., 141 (1996), 99-132. doi: 10.1006/jfan.1996.0123.

[6]

M. Chae, The global classical solution of the Vlasov-Maxwell-Fokker-Planck system near Maxwellian, Math. Models Methods Appl. Sci., 21 (2011), 1007-1025. doi: 10.1142/S0218202511005222.

[7]

R. DiPerna and P.-L. Lions, Global weak solutions of kinetic equations, Rend. Sem. Mat. Univ. Politec. Torino, 46 (1988), 259-288.

[8]

R.-J. Duan and S.-Q. Liu, The Vlasov-Poisson-Boltzmann system without angular cutoff, Comm. Math. Phys., 324 (2013), 1-45.

[9]

R.-J. Duan and R.-M. Strain, Optimal time decay of the Vlasov-Poisson-Boltzmann system in $R^3$, Arch. Ration. Mech. Anal., 199 (2011), 291-328. doi: 10.1007/s00205-010-0318-6.

[10]

R.-J. Duan, T. Yang and H.-J. Zhao, The Vlasov-Poisson-Boltzmann system in the whole space: The hard potential case, J. Differential Equations, 252 (2012), 6356-6386. doi: 10.1016/j.jde.2012.03.012.

[11]

R. T. Glassey, The Cauchy Problem in Kinetic Theory, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1996. doi: 10.1137/1.9781611971477.

[12]

Y. Guo, The Vlasov-Poisson-Boltzmann system near Maxwellians, Comm. Pure Appl. Math., 55 (2002), 1104-1135. doi: 10.1002/cpa.10040.

[13]

L. Hsiao, F.-C. Li and S. Wang, Combined quasineutral and inviscid limit of the Vlasov-Poisson-Fokker-Planck system, Commun. Pure Appl. Anal., 7 (2008), 579-589. doi: 10.3934/cpaa.2008.7.579.

[14]

H.-J Hwang and J. Jang, On the Vlasov-Poisson-Fokker-Planck equation near Maxwellian, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 681-691. doi: 10.3934/dcdsb.2013.18.681.

[15]

S. Kawashima, The Boltzmann equation and thirteen moments, Japan J. Appl. Math., 7 (1990), 301-320. doi: 10.1007/BF03167846.

[16]

R. Lai, On the one and one-half dimensional relativistic Vlasov-Maxwell-Fokker-Planck system with non-vanishing viscosity, Math. Meth. Appl. Sci., 21 (1998), 1287-1296. doi: 10.1002/(SICI)1099-1476(19980925)21:14<1287::AID-MMA996>3.0.CO;2-G.

[17]

S.-Q. Liu and H.-J. Zhao, Optimal large-time decay of the relativistic Landau-Maxwell system, J. Differential Equations, 256 (2014), 832-857. doi: 10.1016/j.jde.2013.10.004.

[18]

B. O'Dwyer and H.-D. Victory Jr., On classical solutions of the Vlasov-Poisson-Fokker-Planck system, Indiana Univ. Math. J., 39 (1990), 105-156. doi: 10.1512/iumj.1990.39.39009.

[19]

G. Rein and J. Weckler, Generic global classical solutions of the Vlasov-Fokker-Planck-Poisson system in three dimensions, J. Differential Equations, 99 (1992), 59-77. doi: 10.1016/0022-0396(92)90135-A.

[20]

R.-M. Strain and Y. Guo, Stability of the relativistic Maxwellian in a collisional plasma, Comm. Math. Phys., 251 (2004), 263-320. doi: 10.1007/s00220-004-1151-2.

[21]

H.-D. Victory Jr., On the existence of global weak solutions for Vlasov-Poisson-Fokker-Planck systems, J. Math. Anal. Appl., 160 (1991), 525-555. doi: 10.1016/0022-247X(91)90324-S.

[22]

C. Villani, Hypocoercivity, Memoirs Amer. Math. Soc., 202 (2009), iv+141 pp. doi: 10.1090/S0065-9266-09-00567-5.

[23]

T. Yang, and H.-J. Yu, Hypocoercivity of the relativistic Boltzmann and Landau equations in the whole space, J. Differential Equations, 248 (2010), 1518-1560. doi: 10.1016/j.jde.2009.11.027.

[24]

T. Yang and H.-J. Yu, Global classical solutions for the Vlasov-Maxwell-Fokker-Planck system, SIAM J. Math. Anal., 42 (2010), 459-488. doi: 10.1137/090755796.

[25]

T. Yang and H.-J. Zhao, Global existence of classical solutions to the Vlasov-Poisson-Boltzmann system, Comm. Math. Phys., 268 (2006), 569-605. doi: 10.1007/s00220-006-0103-4.

[1]

Ling Hsiao, Fucai Li, Shu Wang. Combined quasineutral and inviscid limit of the Vlasov-Poisson-Fokker-Planck system. Communications on Pure and Applied Analysis, 2008, 7 (3) : 579-589. doi: 10.3934/cpaa.2008.7.579

[2]

Kosuke Ono, Walter A. Strauss. Regular solutions of the Vlasov-Poisson-Fokker-Planck system. Discrete and Continuous Dynamical Systems, 2000, 6 (4) : 751-772. doi: 10.3934/dcds.2000.6.751

[3]

Yuhua Zhu. A local sensitivity and regularity analysis for the Vlasov-Poisson-Fokker-Planck system with multi-dimensional uncertainty and the spectral convergence of the stochastic Galerkin method. Networks and Heterogeneous Media, 2019, 14 (4) : 677-707. doi: 10.3934/nhm.2019027

[4]

Maxime Hauray, Samir Salem. Propagation of chaos for the Vlasov-Poisson-Fokker-Planck system in 1D. Kinetic and Related Models, 2019, 12 (2) : 269-302. doi: 10.3934/krm.2019012

[5]

Mingying Zhong. Diffusion limit and the optimal convergence rate of the Vlasov-Poisson-Fokker-Planck system. Kinetic and Related Models, 2022, 15 (1) : 1-26. doi: 10.3934/krm.2021041

[6]

Hyung Ju Hwang, Juhi Jang. On the Vlasov-Poisson-Fokker-Planck equation near Maxwellian. Discrete and Continuous Dynamical Systems - B, 2013, 18 (3) : 681-691. doi: 10.3934/dcdsb.2013.18.681

[7]

Stephen Pankavich, Nicholas Michalowski. Global classical solutions for the "One and one-half'' dimensional relativistic Vlasov-Maxwell-Fokker-Planck system. Kinetic and Related Models, 2015, 8 (1) : 169-199. doi: 10.3934/krm.2015.8.169

[8]

Mihai Bostan, Thierry Goudon. Low field regime for the relativistic Vlasov-Maxwell-Fokker-Planck system; the one and one half dimensional case. Kinetic and Related Models, 2008, 1 (1) : 139-170. doi: 10.3934/krm.2008.1.139

[9]

José A. Carrillo, Young-Pil Choi, Yingping Peng. Large friction-high force fields limit for the nonlinear Vlasov–Poisson–Fokker–Planck system. Kinetic and Related Models, 2022, 15 (3) : 355-384. doi: 10.3934/krm.2021052

[10]

Hai-Liang Li, Hongjun Yu, Mingying Zhong. Spectrum structure and optimal decay rate of the relativistic Vlasov-Poisson-Landau system. Kinetic and Related Models, 2017, 10 (4) : 1089-1125. doi: 10.3934/krm.2017043

[11]

José A. Carrillo, Renjun Duan, Ayman Moussa. Global classical solutions close to equilibrium to the Vlasov-Fokker-Planck-Euler system. Kinetic and Related Models, 2011, 4 (1) : 227-258. doi: 10.3934/krm.2011.4.227

[12]

Young-Pil Choi, In-Jee Jeong. Global-in-time existence of weak solutions for Vlasov-Manev-Fokker-Planck system. Kinetic and Related Models, , () : -. doi: 10.3934/krm.2022021

[13]

Linjie Xiong, Tao Wang, Lusheng Wang. Global existence and decay of solutions to the Fokker-Planck-Boltzmann equation. Kinetic and Related Models, 2014, 7 (1) : 169-194. doi: 10.3934/krm.2014.7.169

[14]

Xiuting Li. The energy conservation for weak solutions to the relativistic Nordström-Vlasov system. Evolution Equations and Control Theory, 2016, 5 (1) : 135-145. doi: 10.3934/eect.2016.5.135

[15]

José Antonio Alcántara, Simone Calogero. On a relativistic Fokker-Planck equation in kinetic theory. Kinetic and Related Models, 2011, 4 (2) : 401-426. doi: 10.3934/krm.2011.4.401

[16]

Xuecheng Wang. Decay estimates for the $ 3D $ relativistic and non-relativistic Vlasov-Poisson systems. Kinetic and Related Models, , () : -. doi: 10.3934/krm.2022019

[17]

Bingkang Huang, Lan Zhang. A global existence of classical solutions to the two-dimensional Vlasov-Fokker-Planck and magnetohydrodynamics equations with large initial data. Kinetic and Related Models, 2019, 12 (2) : 357-396. doi: 10.3934/krm.2019016

[18]

Simone Calogero, Stephen Pankavich. On the spatially homogeneous and isotropic Einstein-Vlasov-Fokker-Planck system with cosmological scalar field. Kinetic and Related Models, 2018, 11 (5) : 1063-1083. doi: 10.3934/krm.2018041

[19]

Jack Schaeffer. On time decay for the spherically symmetric Vlasov-Poisson system. Kinetic and Related Models, 2022, 15 (4) : 721-727. doi: 10.3934/krm.2021021

[20]

Lvqiao Liu, Hao Wang. Global existence and decay of solutions for hard potentials to the fokker-planck-boltzmann equation without cut-off. Communications on Pure and Applied Analysis, 2020, 19 (6) : 3113-3136. doi: 10.3934/cpaa.2020135

2021 Impact Factor: 1.398

Metrics

  • PDF downloads (196)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]