-
Previous Article
Parameter extraction of complex production systems via a kinetic approach
- KRM Home
- This Issue
-
Next Article
An accurate and efficient discrete formulation of aggregation population balance equation
Global solutions to the relativistic Vlasov-Poisson-Fokker-Planck system
1. | School of Mathematics and Information Science, Guangzhou University, Guangzhou 510006, China |
2. | School of Mathematical Sciences, South China Normal University, Guangzhou 510631 |
References:
[1] |
M. Bostan and Th. Goudon, Low field regime for the relativistic Vlasov-Maxwell-Fokker-Planck system: the one and one half dimensional case,, Kinet. Relat. Models, 1 (2008), 139.
doi: 10.3934/krm.2008.1.139. |
[2] |
F. Bouchut, Existence and uniqueness of a global smooth solution for the Vlasov-Poisson-Fokker-Planck system in three dimensions,, J. Func. Anal., 111 (1993), 239.
doi: 10.1006/jfan.1993.1011. |
[3] |
A. Carpio, Long-time behaviour for solutions of the Vlasov-Poisson-Fokker-Planck equation,, Math. Methods Appl. Sci., 21 (1998), 985.
doi: 10.1002/(SICI)1099-1476(19980725)21:11<985::AID-MMA919>3.0.CO;2-B. |
[4] |
J.-A. Carrillo and J. Soler, On the initial value problem for the Vlasov-Poisson-Fokker-Planck system with initial data in $L^p$ spaces,, Math. Methods Appl. Sci., 18 (1995), 825.
doi: 10.1002/mma.1670181006. |
[5] |
J.-A. Carrillo, J. Soler and J. L. Vazquez, Asymptotic behaviour and self-similarity for the three-dimensional Vlasov-Poisson-Fokker-Planck system,, J. Func. Anal., 141 (1996), 99.
doi: 10.1006/jfan.1996.0123. |
[6] |
M. Chae, The global classical solution of the Vlasov-Maxwell-Fokker-Planck system near Maxwellian,, Math. Models Methods Appl. Sci., 21 (2011), 1007.
doi: 10.1142/S0218202511005222. |
[7] |
R. DiPerna and P.-L. Lions, Global weak solutions of kinetic equations,, Rend. Sem. Mat. Univ. Politec. Torino, 46 (1988), 259.
|
[8] |
R.-J. Duan and S.-Q. Liu, The Vlasov-Poisson-Boltzmann system without angular cutoff,, Comm. Math. Phys., 324 (2013), 1.
|
[9] |
R.-J. Duan and R.-M. Strain, Optimal time decay of the Vlasov-Poisson-Boltzmann system in $R^3$,, Arch. Ration. Mech. Anal., 199 (2011), 291.
doi: 10.1007/s00205-010-0318-6. |
[10] |
R.-J. Duan, T. Yang and H.-J. Zhao, The Vlasov-Poisson-Boltzmann system in the whole space: The hard potential case,, J. Differential Equations, 252 (2012), 6356.
doi: 10.1016/j.jde.2012.03.012. |
[11] |
R. T. Glassey, The Cauchy Problem in Kinetic Theory,, Society for Industrial and Applied Mathematics (SIAM), (1996).
doi: 10.1137/1.9781611971477. |
[12] |
Y. Guo, The Vlasov-Poisson-Boltzmann system near Maxwellians,, Comm. Pure Appl. Math., 55 (2002), 1104.
doi: 10.1002/cpa.10040. |
[13] |
L. Hsiao, F.-C. Li and S. Wang, Combined quasineutral and inviscid limit of the Vlasov-Poisson-Fokker-Planck system,, Commun. Pure Appl. Anal., 7 (2008), 579.
doi: 10.3934/cpaa.2008.7.579. |
[14] |
H.-J Hwang and J. Jang, On the Vlasov-Poisson-Fokker-Planck equation near Maxwellian,, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 681.
doi: 10.3934/dcdsb.2013.18.681. |
[15] |
S. Kawashima, The Boltzmann equation and thirteen moments,, Japan J. Appl. Math., 7 (1990), 301.
doi: 10.1007/BF03167846. |
[16] |
R. Lai, On the one and one-half dimensional relativistic Vlasov-Maxwell-Fokker-Planck system with non-vanishing viscosity,, Math. Meth. Appl. Sci., 21 (1998), 1287.
doi: 10.1002/(SICI)1099-1476(19980925)21:14<1287::AID-MMA996>3.0.CO;2-G. |
[17] |
S.-Q. Liu and H.-J. Zhao, Optimal large-time decay of the relativistic Landau-Maxwell system,, J. Differential Equations, 256 (2014), 832.
doi: 10.1016/j.jde.2013.10.004. |
[18] |
B. O'Dwyer and H.-D. Victory Jr., On classical solutions of the Vlasov-Poisson-Fokker-Planck system,, Indiana Univ. Math. J., 39 (1990), 105.
doi: 10.1512/iumj.1990.39.39009. |
[19] |
G. Rein and J. Weckler, Generic global classical solutions of the Vlasov-Fokker-Planck-Poisson system in three dimensions,, J. Differential Equations, 99 (1992), 59.
doi: 10.1016/0022-0396(92)90135-A. |
[20] |
R.-M. Strain and Y. Guo, Stability of the relativistic Maxwellian in a collisional plasma,, Comm. Math. Phys., 251 (2004), 263.
doi: 10.1007/s00220-004-1151-2. |
[21] |
H.-D. Victory Jr., On the existence of global weak solutions for Vlasov-Poisson-Fokker-Planck systems,, J. Math. Anal. Appl., 160 (1991), 525.
doi: 10.1016/0022-247X(91)90324-S. |
[22] |
C. Villani, Hypocoercivity,, Memoirs Amer. Math. Soc., 202 (2009).
doi: 10.1090/S0065-9266-09-00567-5. |
[23] |
T. Yang, and H.-J. Yu, Hypocoercivity of the relativistic Boltzmann and Landau equations in the whole space,, J. Differential Equations, 248 (2010), 1518.
doi: 10.1016/j.jde.2009.11.027. |
[24] |
T. Yang and H.-J. Yu, Global classical solutions for the Vlasov-Maxwell-Fokker-Planck system,, SIAM J. Math. Anal., 42 (2010), 459.
doi: 10.1137/090755796. |
[25] |
T. Yang and H.-J. Zhao, Global existence of classical solutions to the Vlasov-Poisson-Boltzmann system,, Comm. Math. Phys., 268 (2006), 569.
doi: 10.1007/s00220-006-0103-4. |
show all references
References:
[1] |
M. Bostan and Th. Goudon, Low field regime for the relativistic Vlasov-Maxwell-Fokker-Planck system: the one and one half dimensional case,, Kinet. Relat. Models, 1 (2008), 139.
doi: 10.3934/krm.2008.1.139. |
[2] |
F. Bouchut, Existence and uniqueness of a global smooth solution for the Vlasov-Poisson-Fokker-Planck system in three dimensions,, J. Func. Anal., 111 (1993), 239.
doi: 10.1006/jfan.1993.1011. |
[3] |
A. Carpio, Long-time behaviour for solutions of the Vlasov-Poisson-Fokker-Planck equation,, Math. Methods Appl. Sci., 21 (1998), 985.
doi: 10.1002/(SICI)1099-1476(19980725)21:11<985::AID-MMA919>3.0.CO;2-B. |
[4] |
J.-A. Carrillo and J. Soler, On the initial value problem for the Vlasov-Poisson-Fokker-Planck system with initial data in $L^p$ spaces,, Math. Methods Appl. Sci., 18 (1995), 825.
doi: 10.1002/mma.1670181006. |
[5] |
J.-A. Carrillo, J. Soler and J. L. Vazquez, Asymptotic behaviour and self-similarity for the three-dimensional Vlasov-Poisson-Fokker-Planck system,, J. Func. Anal., 141 (1996), 99.
doi: 10.1006/jfan.1996.0123. |
[6] |
M. Chae, The global classical solution of the Vlasov-Maxwell-Fokker-Planck system near Maxwellian,, Math. Models Methods Appl. Sci., 21 (2011), 1007.
doi: 10.1142/S0218202511005222. |
[7] |
R. DiPerna and P.-L. Lions, Global weak solutions of kinetic equations,, Rend. Sem. Mat. Univ. Politec. Torino, 46 (1988), 259.
|
[8] |
R.-J. Duan and S.-Q. Liu, The Vlasov-Poisson-Boltzmann system without angular cutoff,, Comm. Math. Phys., 324 (2013), 1.
|
[9] |
R.-J. Duan and R.-M. Strain, Optimal time decay of the Vlasov-Poisson-Boltzmann system in $R^3$,, Arch. Ration. Mech. Anal., 199 (2011), 291.
doi: 10.1007/s00205-010-0318-6. |
[10] |
R.-J. Duan, T. Yang and H.-J. Zhao, The Vlasov-Poisson-Boltzmann system in the whole space: The hard potential case,, J. Differential Equations, 252 (2012), 6356.
doi: 10.1016/j.jde.2012.03.012. |
[11] |
R. T. Glassey, The Cauchy Problem in Kinetic Theory,, Society for Industrial and Applied Mathematics (SIAM), (1996).
doi: 10.1137/1.9781611971477. |
[12] |
Y. Guo, The Vlasov-Poisson-Boltzmann system near Maxwellians,, Comm. Pure Appl. Math., 55 (2002), 1104.
doi: 10.1002/cpa.10040. |
[13] |
L. Hsiao, F.-C. Li and S. Wang, Combined quasineutral and inviscid limit of the Vlasov-Poisson-Fokker-Planck system,, Commun. Pure Appl. Anal., 7 (2008), 579.
doi: 10.3934/cpaa.2008.7.579. |
[14] |
H.-J Hwang and J. Jang, On the Vlasov-Poisson-Fokker-Planck equation near Maxwellian,, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 681.
doi: 10.3934/dcdsb.2013.18.681. |
[15] |
S. Kawashima, The Boltzmann equation and thirteen moments,, Japan J. Appl. Math., 7 (1990), 301.
doi: 10.1007/BF03167846. |
[16] |
R. Lai, On the one and one-half dimensional relativistic Vlasov-Maxwell-Fokker-Planck system with non-vanishing viscosity,, Math. Meth. Appl. Sci., 21 (1998), 1287.
doi: 10.1002/(SICI)1099-1476(19980925)21:14<1287::AID-MMA996>3.0.CO;2-G. |
[17] |
S.-Q. Liu and H.-J. Zhao, Optimal large-time decay of the relativistic Landau-Maxwell system,, J. Differential Equations, 256 (2014), 832.
doi: 10.1016/j.jde.2013.10.004. |
[18] |
B. O'Dwyer and H.-D. Victory Jr., On classical solutions of the Vlasov-Poisson-Fokker-Planck system,, Indiana Univ. Math. J., 39 (1990), 105.
doi: 10.1512/iumj.1990.39.39009. |
[19] |
G. Rein and J. Weckler, Generic global classical solutions of the Vlasov-Fokker-Planck-Poisson system in three dimensions,, J. Differential Equations, 99 (1992), 59.
doi: 10.1016/0022-0396(92)90135-A. |
[20] |
R.-M. Strain and Y. Guo, Stability of the relativistic Maxwellian in a collisional plasma,, Comm. Math. Phys., 251 (2004), 263.
doi: 10.1007/s00220-004-1151-2. |
[21] |
H.-D. Victory Jr., On the existence of global weak solutions for Vlasov-Poisson-Fokker-Planck systems,, J. Math. Anal. Appl., 160 (1991), 525.
doi: 10.1016/0022-247X(91)90324-S. |
[22] |
C. Villani, Hypocoercivity,, Memoirs Amer. Math. Soc., 202 (2009).
doi: 10.1090/S0065-9266-09-00567-5. |
[23] |
T. Yang, and H.-J. Yu, Hypocoercivity of the relativistic Boltzmann and Landau equations in the whole space,, J. Differential Equations, 248 (2010), 1518.
doi: 10.1016/j.jde.2009.11.027. |
[24] |
T. Yang and H.-J. Yu, Global classical solutions for the Vlasov-Maxwell-Fokker-Planck system,, SIAM J. Math. Anal., 42 (2010), 459.
doi: 10.1137/090755796. |
[25] |
T. Yang and H.-J. Zhao, Global existence of classical solutions to the Vlasov-Poisson-Boltzmann system,, Comm. Math. Phys., 268 (2006), 569.
doi: 10.1007/s00220-006-0103-4. |
[1] |
Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021003 |
[2] |
Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292 |
[3] |
Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322 |
[4] |
Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020108 |
[5] |
Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163 |
[6] |
Juntao Sun, Tsung-fang Wu. The number of nodal solutions for the Schrödinger–Poisson system under the effect of the weight function. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021011 |
[7] |
Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021002 |
[8] |
Yulia O. Belyaeva, Björn Gebhard, Alexander L. Skubachevskii. A general way to confined stationary Vlasov-Poisson plasma configurations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021004 |
[9] |
Xiaoxiao Li, Yingjing Shi, Rui Li, Shida Cao. Energy management method for an unpowered landing. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020180 |
[10] |
Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, 2021, 14 (1) : 149-174. doi: 10.3934/krm.2020052 |
[11] |
Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273 |
[12] |
Manil T. Mohan. Global attractors, exponential attractors and determining modes for the three dimensional Kelvin-Voigt fluids with "fading memory". Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020105 |
[13] |
Kai Zhang, Xiaoqi Yang, Song Wang. Solution method for discrete double obstacle problems based on a power penalty approach. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021018 |
[14] |
Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033 |
[15] |
Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, 2021, 20 (1) : 319-338. doi: 10.3934/cpaa.2020268 |
[16] |
Bing Yu, Lei Zhang. Global optimization-based dimer method for finding saddle points. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 741-753. doi: 10.3934/dcdsb.2020139 |
[17] |
Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020447 |
[18] |
Rong Chen, Shihang Pan, Baoshuai Zhang. Global conservative solutions for a modified periodic coupled Camassa-Holm system. Electronic Research Archive, 2021, 29 (1) : 1691-1708. doi: 10.3934/era.2020087 |
[19] |
Hai-Yang Jin, Zhi-An Wang. Global stabilization of the full attraction-repulsion Keller-Segel system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3509-3527. doi: 10.3934/dcds.2020027 |
[20] |
Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003 |
2019 Impact Factor: 1.311
Tools
Metrics
Other articles
by authors
[Back to Top]