June  2016, 9(2): 393-405. doi: 10.3934/krm.2016.9.393

Global solutions to the relativistic Vlasov-Poisson-Fokker-Planck system

1. 

School of Mathematics and Information Science, Guangzhou University, Guangzhou 510006, China

2. 

School of Mathematical Sciences, South China Normal University, Guangzhou 510631

Received  July 2015 Revised  September 2015 Published  March 2016

Global solutions to the relativistic Vlasov-Poisson-Fokker-Planck system near the relativistic Maxwellian are constructed based on an approach by combining the compensating function and energy method. In addition, an exponential rate in time of the solution to its equilibrium is obtained.
Citation: Lan Luo, Hongjun Yu. Global solutions to the relativistic Vlasov-Poisson-Fokker-Planck system. Kinetic & Related Models, 2016, 9 (2) : 393-405. doi: 10.3934/krm.2016.9.393
References:
[1]

M. Bostan and Th. Goudon, Low field regime for the relativistic Vlasov-Maxwell-Fokker-Planck system: the one and one half dimensional case,, Kinet. Relat. Models, 1 (2008), 139.  doi: 10.3934/krm.2008.1.139.  Google Scholar

[2]

F. Bouchut, Existence and uniqueness of a global smooth solution for the Vlasov-Poisson-Fokker-Planck system in three dimensions,, J. Func. Anal., 111 (1993), 239.  doi: 10.1006/jfan.1993.1011.  Google Scholar

[3]

A. Carpio, Long-time behaviour for solutions of the Vlasov-Poisson-Fokker-Planck equation,, Math. Methods Appl. Sci., 21 (1998), 985.  doi: 10.1002/(SICI)1099-1476(19980725)21:11<985::AID-MMA919>3.0.CO;2-B.  Google Scholar

[4]

J.-A. Carrillo and J. Soler, On the initial value problem for the Vlasov-Poisson-Fokker-Planck system with initial data in $L^p$ spaces,, Math. Methods Appl. Sci., 18 (1995), 825.  doi: 10.1002/mma.1670181006.  Google Scholar

[5]

J.-A. Carrillo, J. Soler and J. L. Vazquez, Asymptotic behaviour and self-similarity for the three-dimensional Vlasov-Poisson-Fokker-Planck system,, J. Func. Anal., 141 (1996), 99.  doi: 10.1006/jfan.1996.0123.  Google Scholar

[6]

M. Chae, The global classical solution of the Vlasov-Maxwell-Fokker-Planck system near Maxwellian,, Math. Models Methods Appl. Sci., 21 (2011), 1007.  doi: 10.1142/S0218202511005222.  Google Scholar

[7]

R. DiPerna and P.-L. Lions, Global weak solutions of kinetic equations,, Rend. Sem. Mat. Univ. Politec. Torino, 46 (1988), 259.   Google Scholar

[8]

R.-J. Duan and S.-Q. Liu, The Vlasov-Poisson-Boltzmann system without angular cutoff,, Comm. Math. Phys., 324 (2013), 1.   Google Scholar

[9]

R.-J. Duan and R.-M. Strain, Optimal time decay of the Vlasov-Poisson-Boltzmann system in $R^3$,, Arch. Ration. Mech. Anal., 199 (2011), 291.  doi: 10.1007/s00205-010-0318-6.  Google Scholar

[10]

R.-J. Duan, T. Yang and H.-J. Zhao, The Vlasov-Poisson-Boltzmann system in the whole space: The hard potential case,, J. Differential Equations, 252 (2012), 6356.  doi: 10.1016/j.jde.2012.03.012.  Google Scholar

[11]

R. T. Glassey, The Cauchy Problem in Kinetic Theory,, Society for Industrial and Applied Mathematics (SIAM), (1996).  doi: 10.1137/1.9781611971477.  Google Scholar

[12]

Y. Guo, The Vlasov-Poisson-Boltzmann system near Maxwellians,, Comm. Pure Appl. Math., 55 (2002), 1104.  doi: 10.1002/cpa.10040.  Google Scholar

[13]

L. Hsiao, F.-C. Li and S. Wang, Combined quasineutral and inviscid limit of the Vlasov-Poisson-Fokker-Planck system,, Commun. Pure Appl. Anal., 7 (2008), 579.  doi: 10.3934/cpaa.2008.7.579.  Google Scholar

[14]

H.-J Hwang and J. Jang, On the Vlasov-Poisson-Fokker-Planck equation near Maxwellian,, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 681.  doi: 10.3934/dcdsb.2013.18.681.  Google Scholar

[15]

S. Kawashima, The Boltzmann equation and thirteen moments,, Japan J. Appl. Math., 7 (1990), 301.  doi: 10.1007/BF03167846.  Google Scholar

[16]

R. Lai, On the one and one-half dimensional relativistic Vlasov-Maxwell-Fokker-Planck system with non-vanishing viscosity,, Math. Meth. Appl. Sci., 21 (1998), 1287.  doi: 10.1002/(SICI)1099-1476(19980925)21:14<1287::AID-MMA996>3.0.CO;2-G.  Google Scholar

[17]

S.-Q. Liu and H.-J. Zhao, Optimal large-time decay of the relativistic Landau-Maxwell system,, J. Differential Equations, 256 (2014), 832.  doi: 10.1016/j.jde.2013.10.004.  Google Scholar

[18]

B. O'Dwyer and H.-D. Victory Jr., On classical solutions of the Vlasov-Poisson-Fokker-Planck system,, Indiana Univ. Math. J., 39 (1990), 105.  doi: 10.1512/iumj.1990.39.39009.  Google Scholar

[19]

G. Rein and J. Weckler, Generic global classical solutions of the Vlasov-Fokker-Planck-Poisson system in three dimensions,, J. Differential Equations, 99 (1992), 59.  doi: 10.1016/0022-0396(92)90135-A.  Google Scholar

[20]

R.-M. Strain and Y. Guo, Stability of the relativistic Maxwellian in a collisional plasma,, Comm. Math. Phys., 251 (2004), 263.  doi: 10.1007/s00220-004-1151-2.  Google Scholar

[21]

H.-D. Victory Jr., On the existence of global weak solutions for Vlasov-Poisson-Fokker-Planck systems,, J. Math. Anal. Appl., 160 (1991), 525.  doi: 10.1016/0022-247X(91)90324-S.  Google Scholar

[22]

C. Villani, Hypocoercivity,, Memoirs Amer. Math. Soc., 202 (2009).  doi: 10.1090/S0065-9266-09-00567-5.  Google Scholar

[23]

T. Yang, and H.-J. Yu, Hypocoercivity of the relativistic Boltzmann and Landau equations in the whole space,, J. Differential Equations, 248 (2010), 1518.  doi: 10.1016/j.jde.2009.11.027.  Google Scholar

[24]

T. Yang and H.-J. Yu, Global classical solutions for the Vlasov-Maxwell-Fokker-Planck system,, SIAM J. Math. Anal., 42 (2010), 459.  doi: 10.1137/090755796.  Google Scholar

[25]

T. Yang and H.-J. Zhao, Global existence of classical solutions to the Vlasov-Poisson-Boltzmann system,, Comm. Math. Phys., 268 (2006), 569.  doi: 10.1007/s00220-006-0103-4.  Google Scholar

show all references

References:
[1]

M. Bostan and Th. Goudon, Low field regime for the relativistic Vlasov-Maxwell-Fokker-Planck system: the one and one half dimensional case,, Kinet. Relat. Models, 1 (2008), 139.  doi: 10.3934/krm.2008.1.139.  Google Scholar

[2]

F. Bouchut, Existence and uniqueness of a global smooth solution for the Vlasov-Poisson-Fokker-Planck system in three dimensions,, J. Func. Anal., 111 (1993), 239.  doi: 10.1006/jfan.1993.1011.  Google Scholar

[3]

A. Carpio, Long-time behaviour for solutions of the Vlasov-Poisson-Fokker-Planck equation,, Math. Methods Appl. Sci., 21 (1998), 985.  doi: 10.1002/(SICI)1099-1476(19980725)21:11<985::AID-MMA919>3.0.CO;2-B.  Google Scholar

[4]

J.-A. Carrillo and J. Soler, On the initial value problem for the Vlasov-Poisson-Fokker-Planck system with initial data in $L^p$ spaces,, Math. Methods Appl. Sci., 18 (1995), 825.  doi: 10.1002/mma.1670181006.  Google Scholar

[5]

J.-A. Carrillo, J. Soler and J. L. Vazquez, Asymptotic behaviour and self-similarity for the three-dimensional Vlasov-Poisson-Fokker-Planck system,, J. Func. Anal., 141 (1996), 99.  doi: 10.1006/jfan.1996.0123.  Google Scholar

[6]

M. Chae, The global classical solution of the Vlasov-Maxwell-Fokker-Planck system near Maxwellian,, Math. Models Methods Appl. Sci., 21 (2011), 1007.  doi: 10.1142/S0218202511005222.  Google Scholar

[7]

R. DiPerna and P.-L. Lions, Global weak solutions of kinetic equations,, Rend. Sem. Mat. Univ. Politec. Torino, 46 (1988), 259.   Google Scholar

[8]

R.-J. Duan and S.-Q. Liu, The Vlasov-Poisson-Boltzmann system without angular cutoff,, Comm. Math. Phys., 324 (2013), 1.   Google Scholar

[9]

R.-J. Duan and R.-M. Strain, Optimal time decay of the Vlasov-Poisson-Boltzmann system in $R^3$,, Arch. Ration. Mech. Anal., 199 (2011), 291.  doi: 10.1007/s00205-010-0318-6.  Google Scholar

[10]

R.-J. Duan, T. Yang and H.-J. Zhao, The Vlasov-Poisson-Boltzmann system in the whole space: The hard potential case,, J. Differential Equations, 252 (2012), 6356.  doi: 10.1016/j.jde.2012.03.012.  Google Scholar

[11]

R. T. Glassey, The Cauchy Problem in Kinetic Theory,, Society for Industrial and Applied Mathematics (SIAM), (1996).  doi: 10.1137/1.9781611971477.  Google Scholar

[12]

Y. Guo, The Vlasov-Poisson-Boltzmann system near Maxwellians,, Comm. Pure Appl. Math., 55 (2002), 1104.  doi: 10.1002/cpa.10040.  Google Scholar

[13]

L. Hsiao, F.-C. Li and S. Wang, Combined quasineutral and inviscid limit of the Vlasov-Poisson-Fokker-Planck system,, Commun. Pure Appl. Anal., 7 (2008), 579.  doi: 10.3934/cpaa.2008.7.579.  Google Scholar

[14]

H.-J Hwang and J. Jang, On the Vlasov-Poisson-Fokker-Planck equation near Maxwellian,, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 681.  doi: 10.3934/dcdsb.2013.18.681.  Google Scholar

[15]

S. Kawashima, The Boltzmann equation and thirteen moments,, Japan J. Appl. Math., 7 (1990), 301.  doi: 10.1007/BF03167846.  Google Scholar

[16]

R. Lai, On the one and one-half dimensional relativistic Vlasov-Maxwell-Fokker-Planck system with non-vanishing viscosity,, Math. Meth. Appl. Sci., 21 (1998), 1287.  doi: 10.1002/(SICI)1099-1476(19980925)21:14<1287::AID-MMA996>3.0.CO;2-G.  Google Scholar

[17]

S.-Q. Liu and H.-J. Zhao, Optimal large-time decay of the relativistic Landau-Maxwell system,, J. Differential Equations, 256 (2014), 832.  doi: 10.1016/j.jde.2013.10.004.  Google Scholar

[18]

B. O'Dwyer and H.-D. Victory Jr., On classical solutions of the Vlasov-Poisson-Fokker-Planck system,, Indiana Univ. Math. J., 39 (1990), 105.  doi: 10.1512/iumj.1990.39.39009.  Google Scholar

[19]

G. Rein and J. Weckler, Generic global classical solutions of the Vlasov-Fokker-Planck-Poisson system in three dimensions,, J. Differential Equations, 99 (1992), 59.  doi: 10.1016/0022-0396(92)90135-A.  Google Scholar

[20]

R.-M. Strain and Y. Guo, Stability of the relativistic Maxwellian in a collisional plasma,, Comm. Math. Phys., 251 (2004), 263.  doi: 10.1007/s00220-004-1151-2.  Google Scholar

[21]

H.-D. Victory Jr., On the existence of global weak solutions for Vlasov-Poisson-Fokker-Planck systems,, J. Math. Anal. Appl., 160 (1991), 525.  doi: 10.1016/0022-247X(91)90324-S.  Google Scholar

[22]

C. Villani, Hypocoercivity,, Memoirs Amer. Math. Soc., 202 (2009).  doi: 10.1090/S0065-9266-09-00567-5.  Google Scholar

[23]

T. Yang, and H.-J. Yu, Hypocoercivity of the relativistic Boltzmann and Landau equations in the whole space,, J. Differential Equations, 248 (2010), 1518.  doi: 10.1016/j.jde.2009.11.027.  Google Scholar

[24]

T. Yang and H.-J. Yu, Global classical solutions for the Vlasov-Maxwell-Fokker-Planck system,, SIAM J. Math. Anal., 42 (2010), 459.  doi: 10.1137/090755796.  Google Scholar

[25]

T. Yang and H.-J. Zhao, Global existence of classical solutions to the Vlasov-Poisson-Boltzmann system,, Comm. Math. Phys., 268 (2006), 569.  doi: 10.1007/s00220-006-0103-4.  Google Scholar

[1]

Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021003

[2]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[3]

Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322

[4]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[5]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

[6]

Juntao Sun, Tsung-fang Wu. The number of nodal solutions for the Schrödinger–Poisson system under the effect of the weight function. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021011

[7]

Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021002

[8]

Yulia O. Belyaeva, Björn Gebhard, Alexander L. Skubachevskii. A general way to confined stationary Vlasov-Poisson plasma configurations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021004

[9]

Xiaoxiao Li, Yingjing Shi, Rui Li, Shida Cao. Energy management method for an unpowered landing. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020180

[10]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, 2021, 14 (1) : 149-174. doi: 10.3934/krm.2020052

[11]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

[12]

Manil T. Mohan. Global attractors, exponential attractors and determining modes for the three dimensional Kelvin-Voigt fluids with "fading memory". Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020105

[13]

Kai Zhang, Xiaoqi Yang, Song Wang. Solution method for discrete double obstacle problems based on a power penalty approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021018

[14]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033

[15]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, 2021, 20 (1) : 319-338. doi: 10.3934/cpaa.2020268

[16]

Bing Yu, Lei Zhang. Global optimization-based dimer method for finding saddle points. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 741-753. doi: 10.3934/dcdsb.2020139

[17]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[18]

Rong Chen, Shihang Pan, Baoshuai Zhang. Global conservative solutions for a modified periodic coupled Camassa-Holm system. Electronic Research Archive, 2021, 29 (1) : 1691-1708. doi: 10.3934/era.2020087

[19]

Hai-Yang Jin, Zhi-An Wang. Global stabilization of the full attraction-repulsion Keller-Segel system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3509-3527. doi: 10.3934/dcds.2020027

[20]

Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (71)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]