\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A new blowup criterion for strong solutions to a viscous liquid-gas two-phase flow model with vacuum in three dimensions

Abstract Related Papers Cited by
  • In this paper, we establish a new blowup criterion for the strong solutions in a smooth bounded domain $\Omega\subset\mathbb{R}^3$. In [13], Wen, Yao, and Zhu prove that if the strong solutions blow up at finite time $T^*$, the mass in $L^\infty(\Omega)$ norm must concentrate at $T^*$. Here we extend Wen, Yao, and Zhu's work in the sense of the concentration of mass in $BMO(\Omega)$ norm at $T^*$. The method can be applied to study the blow-up criterion in terms of the concentration of density in $BMO(\Omega)$ norm for the strong solutions to compressible Navier-Stokes equations in smooth bounded domains. Therefore, as a byproduct, we can also improves the corresponding result about Navier-Stokes equations in [11]. Moreover, the appearance of vacuum is allowed in the paper.
    Mathematics Subject Classification: 76T10, 76N10, 35L65.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    P. Acquistapace, On BMO regularity for linear elliptic systems, Ann. Mat. Pura Appl., 161 (1992), 231-269.doi: 10.1007/BF01759640.

    [2]

    H. B. Cui, H. Y. Wen and H. Y. Yin, Global classical solutions of viscous liquid-gas two-phase flow model, Math. Meth. Appl. Sci., 36 (2013), 567-583.doi: 10.1002/mma.2614.

    [3]

    S. Evje, T. Flåtten and H. A. Friis, Global weak solutions for a viscous liquid-gas model with transition to single-phase gas flow and vacuum, Nonlinear Anal., TMA, 70 (2009), 3864-3886.doi: 10.1016/j.na.2008.07.043.

    [4]

    S. Evje and K. H. Karlsen, Global existence of weak solutions for a viscous two-phase model, J. Differential Equations, 245 (2008), 2660-2703.doi: 10.1016/j.jde.2007.10.032.

    [5]

    S. Evje and K. H. Karlsen, Global weak solutions for a viscous liquid-gas model with singular pressure law, Commun. Pure Appl. Anal., 8 (2009), 1867-1894.doi: 10.3934/cpaa.2009.8.1867.

    [6]

    Z. H. Guo, J. Yang and L. Yao, Global strong solution for a three-dimensional viscous liquid-gas two-phase flowmodelwith vacuum, Journal of Mathematical Physics, 52 (2011), 093102, 14pp.

    [7]

    C. C. Hao and H. L. Li, Well-posedness for a multidimensional viscous liquid-gas two-phase flow model, SIAM J. Math. Anal., 44 (2012), 1304-1332.doi: 10.1137/110851602.

    [8]

    M. Ishii, Thermo-Fluid Dynamic Theory of Two-Phase Flow, Eyrolles, Paris, 1975.

    [9]

    O. A. Ladyzenskaja, V. A. Solonikov and N. N. Ural'ceva, Linear and Quasilinear Equation of Parabolic Type, Amer. Math. Soc., Providence RI, 1968.

    [10]

    A. Prosperetti and G. Tryggvason (Editors), Computational Methods for Multiphase Flow, Cambridge University Press, Cambridge, 2009.

    [11]

    Y. Z. Sun, C. Wang and Z. F. Zhang, A Beale-Kato-Majda blow-up criterion for the 3-D compressible Navier-Stokes equations, J. Math. Pures Appl., 95 (2011), 36-47.doi: 10.1016/j.matpur.2010.08.001.

    [12]

    V. A. Vaigant and A. V. Kazhikhov, On existence of global solutions to the two-dimensional Navier-Stokes equations for a compressible viscosity fluid, Siberian Math. J., 36 (1995), 1108-1141.doi: 10.1007/BF02106835.

    [13]

    H. Y. Wen, L. Yao and C. J. Zhu, A blow-up criterion of strong solution to a 3D viscous liquid-gas two-phase flow model with vacuum, J.Math.Pures Appl., 97 (2012), 204-229.doi: 10.1016/j.matpur.2011.09.005.

    [14]

    H. Y. Wen and C. J. Zhu, Blow-up criterions of strong solutions to 3D compressible Navier-Stokes equations with vacuum, Advances in Mathematics, 248 (2013), 534-572.doi: 10.1016/j.aim.2013.07.018.

    [15]

    L. Yao and C. J. Zhu, Free boundary value problem for a viscous two-phase model with mass-dependent viscosity, J. Differential Equations, 247 (2009), 2705-2739.doi: 10.1016/j.jde.2009.07.013.

    [16]

    L. Yao and C. J. Zhu, Existence and uniqueness of global weak solution to a two-phase flow model with vacuum, Math. Ann., 349 (2011), 903-928.doi: 10.1007/s00208-010-0544-0.

    [17]

    L. Yao, T. Zhang and C. J. Zhu, Existence and asymptotic behavior of global weak solutions to a 2D viscous liquid-gas two-phase flow model, SIAM J. Math. Anal., 42 (2010), 1874-1897.doi: 10.1137/100785302.

    [18]

    L. Yao, T. Zhang and C. J. Zhu, A blow-up criterion for a 2D viscous liquid-gas two-phase flow model, J. Differential Equations, 250 (2011), 3362-3378.doi: 10.1016/j.jde.2010.12.006.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(167) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return