• Previous Article
    Separated characteristics and global solvability for the one and one-half dimensional Vlasov Maxwell system
  • KRM Home
  • This Issue
  • Next Article
    A new blowup criterion for strong solutions to a viscous liquid-gas two-phase flow model with vacuum in three dimensions
September  2016, 9(3): 443-453. doi: 10.3934/krm.2016002

Convergence of the full compressible Navier-Stokes-Maxwell system to the incompressible magnetohydrodynamic equations in a bounded domain

1. 

Department of Applied Mathematics, Nanjing Forestry University, Nanjing, 210037

2. 

Department of Mathematics, Nanjing University, Nanjing 210093

3. 

Department of Mathematics, Hokkaido University, Sapporo, 060-0810, Japan

Received  April 2015 Revised  October 2015 Published  May 2016

In this paper we establish the uniform estimates of strong solutions with respect to the Mach number and the dielectric constant to the full compressible Navier-Stokes-Maxwell system in a bounded domain. Based on these uniform estimates, we obtain the convergence of the full compressible Navier-Stokes-Maxwell system to the incompressible magnetohydrodynamic equations for well-prepared data.
Citation: Jishan Fan, Fucai Li, Gen Nakamura. Convergence of the full compressible Navier-Stokes-Maxwell system to the incompressible magnetohydrodynamic equations in a bounded domain. Kinetic & Related Models, 2016, 9 (3) : 443-453. doi: 10.3934/krm.2016002
References:
[1]

T. Alazard, Low Mach number limit of the full Navier-Stokes equations,, Arch. Ration. Mech. Anal., 180 (2006), 1.  doi: 10.1007/s00205-005-0393-2.  Google Scholar

[2]

J. Bourguignon and H. Brezis, Remarks on the Euler equation,, J. Funct. Anal., 15 (1974), 341.  doi: 10.1016/0022-1236(74)90027-5.  Google Scholar

[3]

W. Cui, Y. Ou and D. Ren, Incompressible limit of full compressible magnetohydrodynamic equations with well-prepared data in 3-D bounded domains,, J. Math. Anal. Appl., 427 (2015), 263.  doi: 10.1016/j.jmaa.2015.02.049.  Google Scholar

[4]

C. Dou, S. Jiang and Y. Ou, Low Mach number limit of full Navier-Stokes equations in a 3D bounded domain,, J. Differential Equations, 258 (2015), 379.  doi: 10.1016/j.jde.2014.09.017.  Google Scholar

[5]

J. Fan, F. Li and G. Nakamura, Uniform well-posedness and singular limits of the isentropic Navier-Stokes-Maxwell system in a bounded domain,, Z. Angew. Math. Phys., 66 (2015), 1581.  doi: 10.1007/s00033-014-0484-8.  Google Scholar

[6]

I. Imai, General principles of magneto-fluid dynamics,, in Magneto-Fluid Dynamics, (1962), 1.   Google Scholar

[7]

S. Jiang and F. Li, Convergence of the complete electromagnetic fluid system to the full compressible magnetohydrodynamic equations,, Asymptot. Anal., 95 (2015), 161.  doi: 10.3233/ASY-151321.  Google Scholar

[8]

S. Jiang and F. Li, Zero dielectric constant limit to the non-isentropic compressible Euler-Maxwell system,, Sci. China Math., 58 (2015), 61.  doi: 10.1007/s11425-014-4923-y.  Google Scholar

[9]

S. Kawashima and Y. Shizuta, Magnetohydrodynamic approximation of the complete equations for an electromagnetic fluid,, Tsukuba J. Math., 10 (1986), 131.   Google Scholar

[10]

S. Kawashima and Y. Shizuta, Magnetohydrodynamic approximation of the complete equations for an electromagnetic fluid II,, Proc. Japan Acad., 62 (1986), 181.  doi: 10.3792/pjaa.62.181.  Google Scholar

[11]

F. Li and Y. Mu, Low Mach number limit of the full compressible Navier-Stokes-Maxwell system,, J. Math. Anal. Appl., 412 (2014), 334.  doi: 10.1016/j.jmaa.2013.10.064.  Google Scholar

[12]

G. Metivier and S. Schochet, The incompressible limit of the non-isentropic Euler equations,, Arch. Ration. Mech. Anal., 158 (2001), 61.  doi: 10.1007/PL00004241.  Google Scholar

[13]

Y. Xiao and Z. Xin, On the vanishing viscosity limit for the 3D Navier-Stokes equations with a slip boundary condition,, Comm. Pure Appl. Math., 60 (2007), 1027.  doi: 10.1002/cpa.20187.  Google Scholar

[14]

W. M. Zajaczkowski, On nonstationary motion of a compressible barotropic viscous fluid with boundary slip condition,, J. Appl. Anal., 4 (1998), 167.  doi: 10.1515/JAA.1998.167.  Google Scholar

show all references

References:
[1]

T. Alazard, Low Mach number limit of the full Navier-Stokes equations,, Arch. Ration. Mech. Anal., 180 (2006), 1.  doi: 10.1007/s00205-005-0393-2.  Google Scholar

[2]

J. Bourguignon and H. Brezis, Remarks on the Euler equation,, J. Funct. Anal., 15 (1974), 341.  doi: 10.1016/0022-1236(74)90027-5.  Google Scholar

[3]

W. Cui, Y. Ou and D. Ren, Incompressible limit of full compressible magnetohydrodynamic equations with well-prepared data in 3-D bounded domains,, J. Math. Anal. Appl., 427 (2015), 263.  doi: 10.1016/j.jmaa.2015.02.049.  Google Scholar

[4]

C. Dou, S. Jiang and Y. Ou, Low Mach number limit of full Navier-Stokes equations in a 3D bounded domain,, J. Differential Equations, 258 (2015), 379.  doi: 10.1016/j.jde.2014.09.017.  Google Scholar

[5]

J. Fan, F. Li and G. Nakamura, Uniform well-posedness and singular limits of the isentropic Navier-Stokes-Maxwell system in a bounded domain,, Z. Angew. Math. Phys., 66 (2015), 1581.  doi: 10.1007/s00033-014-0484-8.  Google Scholar

[6]

I. Imai, General principles of magneto-fluid dynamics,, in Magneto-Fluid Dynamics, (1962), 1.   Google Scholar

[7]

S. Jiang and F. Li, Convergence of the complete electromagnetic fluid system to the full compressible magnetohydrodynamic equations,, Asymptot. Anal., 95 (2015), 161.  doi: 10.3233/ASY-151321.  Google Scholar

[8]

S. Jiang and F. Li, Zero dielectric constant limit to the non-isentropic compressible Euler-Maxwell system,, Sci. China Math., 58 (2015), 61.  doi: 10.1007/s11425-014-4923-y.  Google Scholar

[9]

S. Kawashima and Y. Shizuta, Magnetohydrodynamic approximation of the complete equations for an electromagnetic fluid,, Tsukuba J. Math., 10 (1986), 131.   Google Scholar

[10]

S. Kawashima and Y. Shizuta, Magnetohydrodynamic approximation of the complete equations for an electromagnetic fluid II,, Proc. Japan Acad., 62 (1986), 181.  doi: 10.3792/pjaa.62.181.  Google Scholar

[11]

F. Li and Y. Mu, Low Mach number limit of the full compressible Navier-Stokes-Maxwell system,, J. Math. Anal. Appl., 412 (2014), 334.  doi: 10.1016/j.jmaa.2013.10.064.  Google Scholar

[12]

G. Metivier and S. Schochet, The incompressible limit of the non-isentropic Euler equations,, Arch. Ration. Mech. Anal., 158 (2001), 61.  doi: 10.1007/PL00004241.  Google Scholar

[13]

Y. Xiao and Z. Xin, On the vanishing viscosity limit for the 3D Navier-Stokes equations with a slip boundary condition,, Comm. Pure Appl. Math., 60 (2007), 1027.  doi: 10.1002/cpa.20187.  Google Scholar

[14]

W. M. Zajaczkowski, On nonstationary motion of a compressible barotropic viscous fluid with boundary slip condition,, J. Appl. Anal., 4 (1998), 167.  doi: 10.1515/JAA.1998.167.  Google Scholar

[1]

Jishan Fan, Fucai Li, Gen Nakamura. Global existence and low Mach number limit to the 3D compressible magnetohydrodynamic equations in a bounded domain. Conference Publications, 2015, 2015 (special) : 387-394. doi: 10.3934/proc.2015.0387

[2]

Fucai Li, Yanmin Mu. Low Mach number limit for the compressible magnetohydrodynamic equations in a periodic domain. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1669-1705. doi: 10.3934/dcds.2018069

[3]

Jishan Fan, Fucai Li, Gen Nakamura. Low Mach number limit of the full compressible Hall-MHD system. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1731-1740. doi: 10.3934/cpaa.2017084

[4]

Jingrui Su. Global existence and low Mach number limit to a 3D compressible micropolar fluids model in a bounded domain. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3423-3434. doi: 10.3934/dcds.2017145

[5]

Weike Wang, Xin Xu. Large time behavior of solution for the full compressible navier-stokes-maxwell system. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2283-2313. doi: 10.3934/cpaa.2015.14.2283

[6]

Xiaofeng Hou, Limei Zhu. Serrin-type blowup criterion for full compressible Navier-Stokes-Maxwell system with vacuum. Communications on Pure & Applied Analysis, 2016, 15 (1) : 161-183. doi: 10.3934/cpaa.2016.15.161

[7]

Jishan Fan, Yueling Jia. Local well-posedness of the full compressible Navier-Stokes-Maxwell system with vacuum. Kinetic & Related Models, 2018, 11 (1) : 97-106. doi: 10.3934/krm.2018005

[8]

Xueke Pu, Min Li. Asymptotic behaviors for the full compressible quantum Navier-Stokes-Maxwell equations with general initial data. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 5149-5181. doi: 10.3934/dcdsb.2019055

[9]

Fucai Li, Yanmin Mu, Dehua Wang. Local well-posedness and low Mach number limit of the compressible magnetohydrodynamic equations in critical spaces. Kinetic & Related Models, 2017, 10 (3) : 741-784. doi: 10.3934/krm.2017030

[10]

Lan Zeng, Guoxi Ni, Yingying Li. Low Mach number limit of strong solutions for 3-D full compressible MHD equations with Dirichlet boundary condition. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5503-5522. doi: 10.3934/dcdsb.2019068

[11]

Fucai Li, Zhipeng Zhang. Zero viscosity-resistivity limit for the 3D incompressible magnetohydrodynamic equations in Gevrey class. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4279-4304. doi: 10.3934/dcds.2018187

[12]

Guangrong Wu, Ping Zhang. The zero diffusion limit of 2-D Navier-Stokes equations with $L^1$ initial vorticity. Discrete & Continuous Dynamical Systems - A, 1999, 5 (3) : 631-638. doi: 10.3934/dcds.1999.5.631

[13]

Jishan Fan, Fucai Li, Gen Nakamura. A regularity criterion for the 3D full compressible magnetohydrodynamic equations with zero heat conductivity. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1757-1766. doi: 10.3934/dcdsb.2018079

[14]

Jianwei Yang, Ruxu Lian, Shu Wang. Incompressible type euler as scaling limit of compressible Euler-Maxwell equations. Communications on Pure & Applied Analysis, 2013, 12 (1) : 503-518. doi: 10.3934/cpaa.2013.12.503

[15]

Zhong Tan, Leilei Tong. Asymptotic behavior of the compressible non-isentropic Navier-Stokes-Maxwell system in $\mathbb{R}^3$. Kinetic & Related Models, 2018, 11 (1) : 191-213. doi: 10.3934/krm.2018010

[16]

Thomas Alazard. A minicourse on the low Mach number limit. Discrete & Continuous Dynamical Systems - S, 2008, 1 (3) : 365-404. doi: 10.3934/dcdss.2008.1.365

[17]

Xin Zhong. Singularity formation to the two-dimensional non-barotropic non-resistive magnetohydrodynamic equations with zero heat conduction in a bounded domain. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019209

[18]

Donatella Donatelli, Bernard Ducomet, Šárka Nečasová. Low Mach number limit for a model of accretion disk. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3239-3268. doi: 10.3934/dcds.2018141

[19]

Linjie Xiong. Incompressible Limit of isentropic Navier-Stokes equations with Navier-slip boundary. Kinetic & Related Models, 2018, 11 (3) : 469-490. doi: 10.3934/krm.2018021

[20]

Matthew Paddick. The strong inviscid limit of the isentropic compressible Navier-Stokes equations with Navier boundary conditions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2673-2709. doi: 10.3934/dcds.2016.36.2673

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (21)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]