\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Convergence of the full compressible Navier-Stokes-Maxwell system to the incompressible magnetohydrodynamic equations in a bounded domain

Abstract Related Papers Cited by
  • In this paper we establish the uniform estimates of strong solutions with respect to the Mach number and the dielectric constant to the full compressible Navier-Stokes-Maxwell system in a bounded domain. Based on these uniform estimates, we obtain the convergence of the full compressible Navier-Stokes-Maxwell system to the incompressible magnetohydrodynamic equations for well-prepared data.
    Mathematics Subject Classification: Primary: 76W05; Secondary: 35Q60, 35B25.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    T. Alazard, Low Mach number limit of the full Navier-Stokes equations, Arch. Ration. Mech. Anal., 180 (2006), 1-73.doi: 10.1007/s00205-005-0393-2.

    [2]

    J. Bourguignon and H. Brezis, Remarks on the Euler equation, J. Funct. Anal., 15 (1974), 341-363.doi: 10.1016/0022-1236(74)90027-5.

    [3]

    W. Cui, Y. Ou and D. Ren, Incompressible limit of full compressible magnetohydrodynamic equations with well-prepared data in 3-D bounded domains, J. Math. Anal. Appl., 427 (2015), 263-288.doi: 10.1016/j.jmaa.2015.02.049.

    [4]

    C. Dou, S. Jiang and Y. Ou, Low Mach number limit of full Navier-Stokes equations in a 3D bounded domain, J. Differential Equations, 258 (2015), 379-398.doi: 10.1016/j.jde.2014.09.017.

    [5]

    J. Fan, F. Li and G. Nakamura, Uniform well-posedness and singular limits of the isentropic Navier-Stokes-Maxwell system in a bounded domain, Z. Angew. Math. Phys., 66 (2015), 1581-1593.doi: 10.1007/s00033-014-0484-8.

    [6]

    I. Imai, General principles of magneto-fluid dynamics, in Magneto-Fluid Dynamics, Suppl. Prog. Theor. Phys. No.24 (ed. H. Yukawa), RIFP Kyoto Univ., (1962), Chap. I, 1-34.

    [7]

    S. Jiang and F. Li, Convergence of the complete electromagnetic fluid system to the full compressible magnetohydrodynamic equations, Asymptot. Anal., 95 (2015), 161-185.doi: 10.3233/ASY-151321.

    [8]

    S. Jiang and F. Li, Zero dielectric constant limit to the non-isentropic compressible Euler-Maxwell system, Sci. China Math., 58 (2015), 61-76.doi: 10.1007/s11425-014-4923-y.

    [9]

    S. Kawashima and Y. Shizuta, Magnetohydrodynamic approximation of the complete equations for an electromagnetic fluid, Tsukuba J. Math., 10 (1986), 131-149.

    [10]

    S. Kawashima and Y. Shizuta, Magnetohydrodynamic approximation of the complete equations for an electromagnetic fluid II, Proc. Japan Acad., Ser. A, 62 (1986), 181-184.doi: 10.3792/pjaa.62.181.

    [11]

    F. Li and Y. Mu, Low Mach number limit of the full compressible Navier-Stokes-Maxwell system, J. Math. Anal. Appl., 412 (2014), 334-344.doi: 10.1016/j.jmaa.2013.10.064.

    [12]

    G. Metivier and S. Schochet, The incompressible limit of the non-isentropic Euler equations, Arch. Ration. Mech. Anal., 158 (2001), 61-90.doi: 10.1007/PL00004241.

    [13]

    Y. Xiao and Z. Xin, On the vanishing viscosity limit for the 3D Navier-Stokes equations with a slip boundary condition, Comm. Pure Appl. Math., 60 (2007), 1027-1055.doi: 10.1002/cpa.20187.

    [14]

    W. M. Zajaczkowski, On nonstationary motion of a compressible barotropic viscous fluid with boundary slip condition, J. Appl. Anal., 4 (1998), 167-204.doi: 10.1515/JAA.1998.167.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(155) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return