• Previous Article
    Global nonlinear stability of rarefaction waves for compressible Navier-Stokes equations with temperature and density dependent transport coefficients
  • KRM Home
  • This Issue
  • Next Article
    Convergence of the full compressible Navier-Stokes-Maxwell system to the incompressible magnetohydrodynamic equations in a bounded domain
September  2016, 9(3): 455-467. doi: 10.3934/krm.2016003

Separated characteristics and global solvability for the one and one-half dimensional Vlasov Maxwell system

1. 

Department of Mathematics, Indiana University, Bloomington, IN 47405

2. 

Department of Applied Mathematics and Statistics, Colorado School of Mines, Golden, CO 80002

3. 

Department of Mathematics Sciences, Carnegie Mellon University, Pittsburgh, PA 15213

Received  September 2015 Revised  January 2016 Published  May 2016

The motion of a collisionless plasma - a high-temperature, low-density, ionized gas - is described by the Vlasov-Maxwell (VM) system. These equations are considered in one space dimension and two momentum dimensions without the assumption of relativistic velocity corrections. The main results are bounds on the spatial and velocity supports of the particle distribution function and uniform estimates on derivatives of this function away from the critical velocity $\vert v_1 \vert = 1$. Additionally, for initial particle distributions that are even in the second velocity argument $v_2$, the global-in-time existence of solutions is shown.
Citation: Robert Glassey, Stephen Pankavich, Jack Schaeffer. Separated characteristics and global solvability for the one and one-half dimensional Vlasov Maxwell system. Kinetic and Related Models, 2016, 9 (3) : 455-467. doi: 10.3934/krm.2016003
References:
[1]

R. J. DiPerna and P. L. Lions, Global weak solutions of Vlasov-Maxwell systems, Comm. Pure Appl. Math., 42 (1989), 729-757. doi: 10.1002/cpa.3160420603.

[2]

R. Glassey, The Cauchy Problem in Kinetic Theory, Society for Industrial and Applied Mathematics (SIAM): Philadelphia, PA, 1996. doi: 10.1137/1.9781611971477.

[3]

R. Glassey, S. Pankavich and J. Schaeffer, Large time behavior of the relativistic vlasov-maxwell system in low space dimension, Differential and Integral Equations, 23 (2010), 61-77.

[4]

R. Glassey, S. Pankavich and J. Schaeffer, Long-time behavior of monocharged and neutral plasmas in "One and one-half" dimensions, Kinetic and Related Models, 2 (2009), 465-488. doi: 10.3934/krm.2009.2.465.

[5]

R. Glassey, S. Pankavich and J. Schaeffer, Decay in time for a one-dimensional, two component plasma, Math. Meth. Appl. Sci., 31 (2008), 2115-2132. doi: 10.1002/mma.1015.

[6]

R. Glassey and J. Schaeffer, On the "one and one-half dimensional'' relativistic Vlasov-Maxwell system, Math. Methods Appl. Sci., 13 (1990), 169-179. doi: 10.1002/mma.1670130207.

[7]

R. Glassey and J. Schaeffer, The "two and one-half-dimensional'' relativistic Vlasov Maxwell system, Comm. Math. Phys., 185 (1997), 257-284. doi: 10.1007/s002200050090.

[8]

R. Glassey and J. Schaeffer, The relativistic Vlasov-Maxwell system in two space dimensions I, Arch. Rational Mech. Anal., 141 (1998), 331-354. doi: 10.1007/s002050050079.

[9]

R. Glassey and J. Schaeffer, The relativistic Vlasov-Maxwell system in two space dimensions II, Arch. Rational Mech. Anal., 141 (1998), 355-374. doi: 10.1007/s002050050079.

[10]

R. Glassey and W. Strauss, Singularity formation in a collisionless plasma could occur only at high velocities, Arch. Rational Mech. Anal., 92 (1986), 59-90. doi: 10.1007/BF00250732.

[11]

R. Glassey and W. Strauss, Remarks on collisionless plasmas, Fluids and plasmas: geometry and dynamics, (Boulder, CO., 1983), Contemp. Math., Amer. Math. Soc., Providence, RI, 28 (1984), 269-279. doi: 10.1090/conm/028/751989.

[12]

P. Lions and P. Perthame, Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system, Invent. Math., 105 (1991), 415-430. doi: 10.1007/BF01232273.

[13]

S. Pankavich and C. Nguyen, A one-dimensional kinetic model of plasma dynamics with a transport field, Evolution Equations and Control Theory, 3 (2014), 681-698. doi: 10.3934/eect.2014.3.681.

[14]

K. Pfaffelmoser, Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data, J. Differential Equations, 95 (1992), 281-303. doi: 10.1016/0022-0396(92)90033-J.

[15]

J. Schaeffer, Global existence of smooth solutions to the vlasov-poisson system in three dimensions, Commun. PDE, 16 (1991), 1313-1335. doi: 10.1080/03605309108820801.

[16]

N. G. van Kampen and B. U. Felderhof, Theoretical Methods in Plasma Physics, Wiley: New York, NY, 1967.

show all references

References:
[1]

R. J. DiPerna and P. L. Lions, Global weak solutions of Vlasov-Maxwell systems, Comm. Pure Appl. Math., 42 (1989), 729-757. doi: 10.1002/cpa.3160420603.

[2]

R. Glassey, The Cauchy Problem in Kinetic Theory, Society for Industrial and Applied Mathematics (SIAM): Philadelphia, PA, 1996. doi: 10.1137/1.9781611971477.

[3]

R. Glassey, S. Pankavich and J. Schaeffer, Large time behavior of the relativistic vlasov-maxwell system in low space dimension, Differential and Integral Equations, 23 (2010), 61-77.

[4]

R. Glassey, S. Pankavich and J. Schaeffer, Long-time behavior of monocharged and neutral plasmas in "One and one-half" dimensions, Kinetic and Related Models, 2 (2009), 465-488. doi: 10.3934/krm.2009.2.465.

[5]

R. Glassey, S. Pankavich and J. Schaeffer, Decay in time for a one-dimensional, two component plasma, Math. Meth. Appl. Sci., 31 (2008), 2115-2132. doi: 10.1002/mma.1015.

[6]

R. Glassey and J. Schaeffer, On the "one and one-half dimensional'' relativistic Vlasov-Maxwell system, Math. Methods Appl. Sci., 13 (1990), 169-179. doi: 10.1002/mma.1670130207.

[7]

R. Glassey and J. Schaeffer, The "two and one-half-dimensional'' relativistic Vlasov Maxwell system, Comm. Math. Phys., 185 (1997), 257-284. doi: 10.1007/s002200050090.

[8]

R. Glassey and J. Schaeffer, The relativistic Vlasov-Maxwell system in two space dimensions I, Arch. Rational Mech. Anal., 141 (1998), 331-354. doi: 10.1007/s002050050079.

[9]

R. Glassey and J. Schaeffer, The relativistic Vlasov-Maxwell system in two space dimensions II, Arch. Rational Mech. Anal., 141 (1998), 355-374. doi: 10.1007/s002050050079.

[10]

R. Glassey and W. Strauss, Singularity formation in a collisionless plasma could occur only at high velocities, Arch. Rational Mech. Anal., 92 (1986), 59-90. doi: 10.1007/BF00250732.

[11]

R. Glassey and W. Strauss, Remarks on collisionless plasmas, Fluids and plasmas: geometry and dynamics, (Boulder, CO., 1983), Contemp. Math., Amer. Math. Soc., Providence, RI, 28 (1984), 269-279. doi: 10.1090/conm/028/751989.

[12]

P. Lions and P. Perthame, Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system, Invent. Math., 105 (1991), 415-430. doi: 10.1007/BF01232273.

[13]

S. Pankavich and C. Nguyen, A one-dimensional kinetic model of plasma dynamics with a transport field, Evolution Equations and Control Theory, 3 (2014), 681-698. doi: 10.3934/eect.2014.3.681.

[14]

K. Pfaffelmoser, Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data, J. Differential Equations, 95 (1992), 281-303. doi: 10.1016/0022-0396(92)90033-J.

[15]

J. Schaeffer, Global existence of smooth solutions to the vlasov-poisson system in three dimensions, Commun. PDE, 16 (1991), 1313-1335. doi: 10.1080/03605309108820801.

[16]

N. G. van Kampen and B. U. Felderhof, Theoretical Methods in Plasma Physics, Wiley: New York, NY, 1967.

[1]

Toan T. Nguyen, Truyen V. Nguyen, Walter A. Strauss. Global magnetic confinement for the 1.5D Vlasov-Maxwell system. Kinetic and Related Models, 2015, 8 (1) : 153-168. doi: 10.3934/krm.2015.8.153

[2]

Sergiu Klainerman, Gigliola Staffilani. A new approach to study the Vlasov-Maxwell system. Communications on Pure and Applied Analysis, 2002, 1 (1) : 103-125. doi: 10.3934/cpaa.2002.1.103

[3]

Jonathan Ben-Artzi, Stephen Pankavich, Junyong Zhang. A toy model for the relativistic Vlasov-Maxwell system. Kinetic and Related Models, 2022, 15 (3) : 341-354. doi: 10.3934/krm.2021053

[4]

Toan T. Nguyen, Truyen V. Nguyen, Walter A. Strauss. Erratum to: Global magnetic confinement for the 1.5D Vlasov-Maxwell system. Kinetic and Related Models, 2015, 8 (3) : 615-616. doi: 10.3934/krm.2015.8.615

[5]

Yunbai Cao, Chanwoo Kim. Glassey-Strauss representation of Vlasov-Maxwell systems in a Half Space. Kinetic and Related Models, 2022, 15 (3) : 385-401. doi: 10.3934/krm.2021034

[6]

Zhiwu Lin. Linear instability of Vlasov-Maxwell systems revisited-A Hamiltonian approach. Kinetic and Related Models, 2022, 15 (4) : 663-679. doi: 10.3934/krm.2021048

[7]

Mohammad Asadzadeh, Piotr Kowalczyk, Christoffer Standar. On hp-streamline diffusion and Nitsche schemes for the relativistic Vlasov-Maxwell system. Kinetic and Related Models, 2019, 12 (1) : 105-131. doi: 10.3934/krm.2019005

[8]

Jin Woo Jang, Robert M. Strain, Tak Kwong Wong. Magnetic confinement for the 2D axisymmetric relativistic Vlasov-Maxwell system in an annulus. Kinetic and Related Models, 2022, 15 (4) : 569-604. doi: 10.3934/krm.2021039

[9]

Etienne Bernard, Laurent Desvillettes, Franç cois Golse, Valeria Ricci. A derivation of the Vlasov-Stokes system for aerosol flows from the kinetic theory of binary gas mixtures. Kinetic and Related Models, 2018, 11 (1) : 43-69. doi: 10.3934/krm.2018003

[10]

Stephen Pankavich, Nicholas Michalowski. Global classical solutions for the "One and one-half'' dimensional relativistic Vlasov-Maxwell-Fokker-Planck system. Kinetic and Related Models, 2015, 8 (1) : 169-199. doi: 10.3934/krm.2015.8.169

[11]

Jack Schaeffer. Global existence for the Vlasov-Poisson system with steady spatial asymptotic behavior. Kinetic and Related Models, 2012, 5 (1) : 129-153. doi: 10.3934/krm.2012.5.129

[12]

Shijin Ding, Boling Guo, Junyu Lin, Ming Zeng. Global existence of weak solutions for Landau-Lifshitz-Maxwell equations. Discrete and Continuous Dynamical Systems, 2007, 17 (4) : 867-890. doi: 10.3934/dcds.2007.17.867

[13]

Victor Wasiolek. Uniform global existence and convergence of Euler-Maxwell systems with small parameters. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2007-2021. doi: 10.3934/cpaa.2016025

[14]

Marion Acheritogaray, Pierre Degond, Amic Frouvelle, Jian-Guo Liu. Kinetic formulation and global existence for the Hall-Magneto-hydrodynamics system. Kinetic and Related Models, 2011, 4 (4) : 901-918. doi: 10.3934/krm.2011.4.901

[15]

Miroslav Grmela, Michal Pavelka. Landau damping in the multiscale Vlasov theory. Kinetic and Related Models, 2018, 11 (3) : 521-545. doi: 10.3934/krm.2018023

[16]

Hyung Ju Hwang, Jaewoo Jung, Juan J. L. Velázquez. On global existence of classical solutions for the Vlasov-Poisson system in convex bounded domains. Discrete and Continuous Dynamical Systems, 2013, 33 (2) : 723-737. doi: 10.3934/dcds.2013.33.723

[17]

Bingkang Huang, Lan Zhang. A global existence of classical solutions to the two-dimensional Vlasov-Fokker-Planck and magnetohydrodynamics equations with large initial data. Kinetic and Related Models, 2019, 12 (2) : 357-396. doi: 10.3934/krm.2019016

[18]

Young-Pil Choi, In-Jee Jeong. Global-in-time existence of weak solutions for Vlasov-Manev-Fokker-Planck system. Kinetic and Related Models, , () : -. doi: 10.3934/krm.2022021

[19]

Darryl D. Holm, Vakhtang Putkaradze, Cesare Tronci. Collisionless kinetic theory of rolling molecules. Kinetic and Related Models, 2013, 6 (2) : 429-458. doi: 10.3934/krm.2013.6.429

[20]

Emmanuel Frénod, Mathieu Lutz. On the Geometrical Gyro-Kinetic theory. Kinetic and Related Models, 2014, 7 (4) : 621-659. doi: 10.3934/krm.2014.7.621

2021 Impact Factor: 1.398

Metrics

  • PDF downloads (136)
  • HTML views (0)
  • Cited by (0)

[Back to Top]