• Previous Article
    The relativistic Vlasov-Maxwell-Boltzmann system for short range interaction
  • KRM Home
  • This Issue
  • Next Article
    Separated characteristics and global solvability for the one and one-half dimensional Vlasov Maxwell system
September  2016, 9(3): 469-514. doi: 10.3934/krm.2016004

Global nonlinear stability of rarefaction waves for compressible Navier-Stokes equations with temperature and density dependent transport coefficients

1. 

School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China

2. 

Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China

Received  January 2016 Revised  February 2016 Published  May 2016

We study the nonlinear stability of rarefaction waves to the Cauchy problem of one-dimensional compressible Navier-Stokes equations for a viscous and heat conducting ideal polytropic gas when the transport coefficients depend on both temperature and density. When the strength of the rarefaction waves is small or the rarefaction waves of different families are separated far enough initially, we show that rarefaction waves are nonlinear stable provided that $(\gamma- 1)\cdot H^3(\mathbb{R})$-norm of the initial perturbation is suitably small with $\gamma>1$ being the adiabatic gas constant.
Citation: Bingkang Huang, Lusheng Wang, Qinghua Xiao. Global nonlinear stability of rarefaction waves for compressible Navier-Stokes equations with temperature and density dependent transport coefficients. Kinetic & Related Models, 2016, 9 (3) : 469-514. doi: 10.3934/krm.2016004
References:
[1]

S. N. Antontsev, A. V. Kazhikhov and V. N. Monakhov, Boundary Value Problems in Mechanics of Nonhomogeneous Fluids,, North-Holland, (1990).   Google Scholar

[2]

C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory of Dilute Gases,, Appl. Math. Sci. 106, (1994).  doi: 10.1007/978-1-4419-8524-8.  Google Scholar

[3]

C. M. Dafermos and L. Hsiao, Global smooth thermomechanical processes in one-dimensional nonlinear thermoviscoelasticity,, Nonlinear Anal., 6 (1982), 435.  doi: 10.1016/0362-546X(82)90058-X.  Google Scholar

[4]

R. Duan, H.-X. Liu and H.-J. Zhao, Nonlinear stability of rarefaction waves for the compressible Navier-Stokes equations with large initial perturbation,, Trans. Amer. Math. Soc., 361 (2009), 453.  doi: 10.1090/S0002-9947-08-04637-0.  Google Scholar

[5]

H. Grad, Asymptotic theory of the Boltzmann equation II, in rarefied gas dynamics,, J.A. Laurmann, (1963), 26.   Google Scholar

[6]

L. Hsiao and S. Jiang, Nonlinear hyperbolic-parabolic coupled systems,, In: Handbook of Differential Equations, (2004), 287.   Google Scholar

[7]

F.-M. Huang, J. Li and A. Matsumura, Asymptotic stability of combination of viscous contact wave with rarefaction waves for one-dimensional compressible Navier-Stokes system,, Arch. Ration. Mech. Anal., 197 (2010), 89.  doi: 10.1007/s00205-009-0267-0.  Google Scholar

[8]

F.-M. Huang and A. Matsumura, Stability of a composite wave of two viscous shock waves for the full compressible Navier-Stokes equation,, Comm. Math. Phys., 289 (2009), 841.  doi: 10.1007/s00220-009-0843-z.  Google Scholar

[9]

F.-M. Huang, A. Matsumura and Z.-P. Xin, Stability of contact discontinuities for the 1-D compressible Navier-Stokes equations,, Arch. Rational Mech. Anal., 179 (2006), 55.  doi: 10.1007/s00205-005-0380-7.  Google Scholar

[10]

F.-M. Huang and T. Wang, Stability of superposition of viscous contact wave and rarefaction waves for compressible Navier-Stokes system,, Preprint at arXiv: 1502.00211., (1502).   Google Scholar

[11]

F.-M. Huang, Z.-P. Xin and T. Yang, Contact discontinuity with general perturbations for gas motions,, Adv. Math., 219 (2008), 1246.  doi: 10.1016/j.aim.2008.06.014.  Google Scholar

[12]

S. Jiang, Large-time behavior of solutions to the equations of a one-dimensional viscous polytropic ideal gas in unbounded domains,, Comm. Math. Phys., 200 (1999), 181.  doi: 10.1007/s002200050526.  Google Scholar

[13]

S. Jiang and R. Racke, Evolution Equations in Thermoelasticity,, Monogr. Surv. Pure Appl. Math., (2000).   Google Scholar

[14]

S. Jiang and P. Zhang, Global weak solutions to the Navier-Stokes equations for a 1D viscous polytropic ideal gas,, Quart. Appl. Math., 61 (2003), 435.   Google Scholar

[15]

H. K. Jenssen and T. K. Karper, One-dimensional compressible flow with temperature dependent transport coefficients,, SIAM J. Math. Anal., 42 (2010), 904.  doi: 10.1137/090763135.  Google Scholar

[16]

Y. Kanel', On a model system of equations of one-dimensional gas motion,, Differ. Uravn., 4 (1968), 374.   Google Scholar

[17]

S. Kawashima and A. Matsumura, Asymptotic stability of travelling wave solutions of systems for one-dimensional gas motion,, Commun. Math. Phys., 101 (1985), 97.  doi: 10.1007/BF01212358.  Google Scholar

[18]

S. Kawashima, A. Matsumura and K. Nishihara, Asymptotic behaviour of solutions for the equations of a viscous heat-conductive gas,, Proc. Japan Acad. Ser. A., 62 (1986), 249.  doi: 10.3792/pjaa.62.249.  Google Scholar

[19]

S. Kawashima and T. Nishida, Global solutions to the initial value problem for the equations of one-dimensional motion of viscous polytropic gases,, J. Math. Kyoto Univ., 21 (1983), 825.   Google Scholar

[20]

B. Kawohl, Global existence of large solutions to initial-boundary value problems for a viscous, heat-conducting, one-dimensional real gas,, J. Differential Equations, 58 (1985), 76.  doi: 10.1016/0022-0396(85)90023-3.  Google Scholar

[21]

A. V. Kazhikhov, Correctness "in the whole" of the mixed boundary value problems for a model system of equations of a viscous gas (in Russian),, Dinamika Sploshn. Sredy, 21 (1975), 18.   Google Scholar

[22]

A. V. Kazhikhov and V. V. Shelukhin, Unique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gas,, J. Appl. Math. Mech., 41 (1977), 273.   Google Scholar

[23]

J. Li and Z. Liang, Some uniform estimates and large-time behavior for one-dimensional compressible Navier-Stokes system in unbounded domains with large data,, Arch. Ration. Mech. Anal., 220 (2016), 1195.  doi: 10.1007/s00205-015-0952-0.  Google Scholar

[24]

H.-X. Liu, T. Yang, H.-J. Zhao and Q.-Y. Zou, One-dimensional compressible Navier-Stokes equations with temperature dependent transport coefficients and large data,, SIAM J. Math. Anal., 46 (2014), 2185.  doi: 10.1137/130920617.  Google Scholar

[25]

T.-P. Liu, Solutions in the large for the equations of nonisentropic gas dynamics,, Indiana Univ. Math. J., 26 (1977), 147.  doi: 10.1512/iumj.1977.26.26011.  Google Scholar

[26]

T.-P. Liu, Shock waves for compressible Navier-Stokes equations are stable,, Commun. Pure Appl. Math., 39 (1986), 565.  doi: 10.1002/cpa.3160390502.  Google Scholar

[27]

T.-P. Liu and Z.-P. Xin, Nonlinear stability of rarefaction waves for compressible Navier-Stokes equations,, Comm. Math. Phys., 118 (1988), 451.  doi: 10.1007/BF01466726.  Google Scholar

[28]

T.-P. Liu and Z.-P. Xin, Pointwise decay to contact discontinuities for systems of viscous conservation laws,, Asian J. Math., 1 (1997), 34.  doi: 10.4310/AJM.1997.v1.n1.a3.  Google Scholar

[29]

T.-P. Liu and Y.-N. Zeng, Large time behavior of solutions for general quasilinear hyperbolic-parabolic systems of conservation laws,, Mem. Amer. Math. Soc., 125 (1997).  doi: 10.1090/memo/0599.  Google Scholar

[30]

T.-P. Liu and Y.-N. Zeng, Shock waves in conservation laws with physical viscosity,, Mem. Amer. Math. Soc., 234 (2015).  doi: 10.1090/memo/1105.  Google Scholar

[31]

A. Matsumura, Inflow and outflow problems in the half space for a one-dimensional isentropic model system of compressible viscous gas. Proceedings of the Third World Congress of Nonlinear Analysts, Part 6 (Catania, 2000),, Nonlinear Anal., 47 (2001), 4269.  doi: 10.1016/S0362-546X(01)00542-9.  Google Scholar

[32]

A. Matsumura and T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases,, J. Math. Kyoto Univ., 20 (1980), 67.   Google Scholar

[33]

A. Matsumura and K. Nishihara, On the stability of travelling wave solutions of a one-dimensional model system for compressible viscous gas,, Japan J. Appl. Math., 2 (1985), 17.  doi: 10.1007/BF03167036.  Google Scholar

[34]

A. Matsumura and K. Nishihara, Asymptotic toward the rarefaction waves of the solutions of a one-dimensional model system for compressible viscous gas,, Japan J. Appl. Math., 3 (1986), 1.  doi: 10.1007/BF03167088.  Google Scholar

[35]

A. Matsumura and K. Nishihara, Global stability of the rarefaction waves of a one-dimensional model system for compressible viscous gas,, Comm. Math. Phys., 144 (1992), 325.  doi: 10.1007/BF02101095.  Google Scholar

[36]

A. Matsumura and K. Nishihara, Global asymptotics toward the rarefaction wave for solutions of viscous p-system with boundary effect,, Quart. Appl. Math., 58 (2000), 69.   Google Scholar

[37]

T. Nishida and J. A. Smoller, Solutions in the large for some nonlinear hyperbolic conservation laws,, Comm. Pure Appl. Math., 26 (1973), 183.  doi: 10.1002/cpa.3160260205.  Google Scholar

[38]

K. Nishihara, T. Yang and H.-J. Zhao, Nonlinear stability of strong rarefaction waves for compressible Navier-Stokes equations,, SIAM J. Math. Anal., 35 (2004), 1561.  doi: 10.1137/S003614100342735X.  Google Scholar

[39]

M. Okada and S. Kawashima, On the equations of one-dimensional motion of compressible viscous fluids,, J. Math. Kyoto Univ., 23 (1983), 55.   Google Scholar

[40]

R.-H. Pan and W.-Z. Zhang, Compressible Navier-Stokes equations with temperature dependent heat conductivity,, Commun. Math. Sci., 13 (2015), 401.  doi: 10.4310/CMS.2015.v13.n2.a7.  Google Scholar

[41]

Z. Tan, T. Yang, H.-J. Zhao and Q.-Y. Zou, Global solutions to the one-dimensional compressible Navier-Stokes-Poisson equations with large data,, SIAM J. Math. Anal., 45 (2013), 547.  doi: 10.1137/120876174.  Google Scholar

[42]

J. B. Temple, Solutions in the large for the nonlinear hyperbolic conservation laws of gas dynamics,, J. Differential Equations, 41 (1981), 96.  doi: 10.1016/0022-0396(81)90055-3.  Google Scholar

[43]

W. G. Vincenti and C. H. Kruger, Introduction to Physical Gas Dynamics,, Cambridge Math. Lib., (1975).   Google Scholar

[44]

L. Wan, T. Wang and H.-J. Zhao, Asymptotic stability of wave patterns to compressible viscous and heat-conducting gases in the half space,, , ().   Google Scholar

[45]

L. Wan, T. Wang and Q.-Y. Zou, Stability of stationary solutions to the outflow problem for full compressible Navier-Stokes equations with large initial perturbation,, IOP Publishing Ltd & London Mathematical Society, 49 (2016).  doi: 10.1088/0951-7715/29/4/1329.  Google Scholar

[46]

T. Wang and H.-J. Zhao, Global large solutions to a viscous heat-conducting one-dimensional gas with temperature-dependent viscosity,, Preprint at , (2015).   Google Scholar

[47]

T. Wang, H.-J. Zhao and Q.-Y. Zou, One-dimensional compressible Navier-Stokes equations with large density oscillation,, Kinet. Relat. Models, 6 (2013), 649.  doi: 10.3934/krm.2013.6.649.  Google Scholar

[48]

Y. B. Zel'dovich and Y. P. Raizer, Physics of Shock Waves and High Temperature Hydrodynamic Phenomena, Vol. II,, Academic Press, (1967).   Google Scholar

[49]

A. A. Zlotnik and A. A. Amosov, On the stability of generalized solutions of equations of one-dimensional motion of a viscous heat-conducting gas,, Siberian Math. J., 38 (1997), 663.  doi: 10.1007/BF02674573.  Google Scholar

show all references

References:
[1]

S. N. Antontsev, A. V. Kazhikhov and V. N. Monakhov, Boundary Value Problems in Mechanics of Nonhomogeneous Fluids,, North-Holland, (1990).   Google Scholar

[2]

C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory of Dilute Gases,, Appl. Math. Sci. 106, (1994).  doi: 10.1007/978-1-4419-8524-8.  Google Scholar

[3]

C. M. Dafermos and L. Hsiao, Global smooth thermomechanical processes in one-dimensional nonlinear thermoviscoelasticity,, Nonlinear Anal., 6 (1982), 435.  doi: 10.1016/0362-546X(82)90058-X.  Google Scholar

[4]

R. Duan, H.-X. Liu and H.-J. Zhao, Nonlinear stability of rarefaction waves for the compressible Navier-Stokes equations with large initial perturbation,, Trans. Amer. Math. Soc., 361 (2009), 453.  doi: 10.1090/S0002-9947-08-04637-0.  Google Scholar

[5]

H. Grad, Asymptotic theory of the Boltzmann equation II, in rarefied gas dynamics,, J.A. Laurmann, (1963), 26.   Google Scholar

[6]

L. Hsiao and S. Jiang, Nonlinear hyperbolic-parabolic coupled systems,, In: Handbook of Differential Equations, (2004), 287.   Google Scholar

[7]

F.-M. Huang, J. Li and A. Matsumura, Asymptotic stability of combination of viscous contact wave with rarefaction waves for one-dimensional compressible Navier-Stokes system,, Arch. Ration. Mech. Anal., 197 (2010), 89.  doi: 10.1007/s00205-009-0267-0.  Google Scholar

[8]

F.-M. Huang and A. Matsumura, Stability of a composite wave of two viscous shock waves for the full compressible Navier-Stokes equation,, Comm. Math. Phys., 289 (2009), 841.  doi: 10.1007/s00220-009-0843-z.  Google Scholar

[9]

F.-M. Huang, A. Matsumura and Z.-P. Xin, Stability of contact discontinuities for the 1-D compressible Navier-Stokes equations,, Arch. Rational Mech. Anal., 179 (2006), 55.  doi: 10.1007/s00205-005-0380-7.  Google Scholar

[10]

F.-M. Huang and T. Wang, Stability of superposition of viscous contact wave and rarefaction waves for compressible Navier-Stokes system,, Preprint at arXiv: 1502.00211., (1502).   Google Scholar

[11]

F.-M. Huang, Z.-P. Xin and T. Yang, Contact discontinuity with general perturbations for gas motions,, Adv. Math., 219 (2008), 1246.  doi: 10.1016/j.aim.2008.06.014.  Google Scholar

[12]

S. Jiang, Large-time behavior of solutions to the equations of a one-dimensional viscous polytropic ideal gas in unbounded domains,, Comm. Math. Phys., 200 (1999), 181.  doi: 10.1007/s002200050526.  Google Scholar

[13]

S. Jiang and R. Racke, Evolution Equations in Thermoelasticity,, Monogr. Surv. Pure Appl. Math., (2000).   Google Scholar

[14]

S. Jiang and P. Zhang, Global weak solutions to the Navier-Stokes equations for a 1D viscous polytropic ideal gas,, Quart. Appl. Math., 61 (2003), 435.   Google Scholar

[15]

H. K. Jenssen and T. K. Karper, One-dimensional compressible flow with temperature dependent transport coefficients,, SIAM J. Math. Anal., 42 (2010), 904.  doi: 10.1137/090763135.  Google Scholar

[16]

Y. Kanel', On a model system of equations of one-dimensional gas motion,, Differ. Uravn., 4 (1968), 374.   Google Scholar

[17]

S. Kawashima and A. Matsumura, Asymptotic stability of travelling wave solutions of systems for one-dimensional gas motion,, Commun. Math. Phys., 101 (1985), 97.  doi: 10.1007/BF01212358.  Google Scholar

[18]

S. Kawashima, A. Matsumura and K. Nishihara, Asymptotic behaviour of solutions for the equations of a viscous heat-conductive gas,, Proc. Japan Acad. Ser. A., 62 (1986), 249.  doi: 10.3792/pjaa.62.249.  Google Scholar

[19]

S. Kawashima and T. Nishida, Global solutions to the initial value problem for the equations of one-dimensional motion of viscous polytropic gases,, J. Math. Kyoto Univ., 21 (1983), 825.   Google Scholar

[20]

B. Kawohl, Global existence of large solutions to initial-boundary value problems for a viscous, heat-conducting, one-dimensional real gas,, J. Differential Equations, 58 (1985), 76.  doi: 10.1016/0022-0396(85)90023-3.  Google Scholar

[21]

A. V. Kazhikhov, Correctness "in the whole" of the mixed boundary value problems for a model system of equations of a viscous gas (in Russian),, Dinamika Sploshn. Sredy, 21 (1975), 18.   Google Scholar

[22]

A. V. Kazhikhov and V. V. Shelukhin, Unique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gas,, J. Appl. Math. Mech., 41 (1977), 273.   Google Scholar

[23]

J. Li and Z. Liang, Some uniform estimates and large-time behavior for one-dimensional compressible Navier-Stokes system in unbounded domains with large data,, Arch. Ration. Mech. Anal., 220 (2016), 1195.  doi: 10.1007/s00205-015-0952-0.  Google Scholar

[24]

H.-X. Liu, T. Yang, H.-J. Zhao and Q.-Y. Zou, One-dimensional compressible Navier-Stokes equations with temperature dependent transport coefficients and large data,, SIAM J. Math. Anal., 46 (2014), 2185.  doi: 10.1137/130920617.  Google Scholar

[25]

T.-P. Liu, Solutions in the large for the equations of nonisentropic gas dynamics,, Indiana Univ. Math. J., 26 (1977), 147.  doi: 10.1512/iumj.1977.26.26011.  Google Scholar

[26]

T.-P. Liu, Shock waves for compressible Navier-Stokes equations are stable,, Commun. Pure Appl. Math., 39 (1986), 565.  doi: 10.1002/cpa.3160390502.  Google Scholar

[27]

T.-P. Liu and Z.-P. Xin, Nonlinear stability of rarefaction waves for compressible Navier-Stokes equations,, Comm. Math. Phys., 118 (1988), 451.  doi: 10.1007/BF01466726.  Google Scholar

[28]

T.-P. Liu and Z.-P. Xin, Pointwise decay to contact discontinuities for systems of viscous conservation laws,, Asian J. Math., 1 (1997), 34.  doi: 10.4310/AJM.1997.v1.n1.a3.  Google Scholar

[29]

T.-P. Liu and Y.-N. Zeng, Large time behavior of solutions for general quasilinear hyperbolic-parabolic systems of conservation laws,, Mem. Amer. Math. Soc., 125 (1997).  doi: 10.1090/memo/0599.  Google Scholar

[30]

T.-P. Liu and Y.-N. Zeng, Shock waves in conservation laws with physical viscosity,, Mem. Amer. Math. Soc., 234 (2015).  doi: 10.1090/memo/1105.  Google Scholar

[31]

A. Matsumura, Inflow and outflow problems in the half space for a one-dimensional isentropic model system of compressible viscous gas. Proceedings of the Third World Congress of Nonlinear Analysts, Part 6 (Catania, 2000),, Nonlinear Anal., 47 (2001), 4269.  doi: 10.1016/S0362-546X(01)00542-9.  Google Scholar

[32]

A. Matsumura and T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases,, J. Math. Kyoto Univ., 20 (1980), 67.   Google Scholar

[33]

A. Matsumura and K. Nishihara, On the stability of travelling wave solutions of a one-dimensional model system for compressible viscous gas,, Japan J. Appl. Math., 2 (1985), 17.  doi: 10.1007/BF03167036.  Google Scholar

[34]

A. Matsumura and K. Nishihara, Asymptotic toward the rarefaction waves of the solutions of a one-dimensional model system for compressible viscous gas,, Japan J. Appl. Math., 3 (1986), 1.  doi: 10.1007/BF03167088.  Google Scholar

[35]

A. Matsumura and K. Nishihara, Global stability of the rarefaction waves of a one-dimensional model system for compressible viscous gas,, Comm. Math. Phys., 144 (1992), 325.  doi: 10.1007/BF02101095.  Google Scholar

[36]

A. Matsumura and K. Nishihara, Global asymptotics toward the rarefaction wave for solutions of viscous p-system with boundary effect,, Quart. Appl. Math., 58 (2000), 69.   Google Scholar

[37]

T. Nishida and J. A. Smoller, Solutions in the large for some nonlinear hyperbolic conservation laws,, Comm. Pure Appl. Math., 26 (1973), 183.  doi: 10.1002/cpa.3160260205.  Google Scholar

[38]

K. Nishihara, T. Yang and H.-J. Zhao, Nonlinear stability of strong rarefaction waves for compressible Navier-Stokes equations,, SIAM J. Math. Anal., 35 (2004), 1561.  doi: 10.1137/S003614100342735X.  Google Scholar

[39]

M. Okada and S. Kawashima, On the equations of one-dimensional motion of compressible viscous fluids,, J. Math. Kyoto Univ., 23 (1983), 55.   Google Scholar

[40]

R.-H. Pan and W.-Z. Zhang, Compressible Navier-Stokes equations with temperature dependent heat conductivity,, Commun. Math. Sci., 13 (2015), 401.  doi: 10.4310/CMS.2015.v13.n2.a7.  Google Scholar

[41]

Z. Tan, T. Yang, H.-J. Zhao and Q.-Y. Zou, Global solutions to the one-dimensional compressible Navier-Stokes-Poisson equations with large data,, SIAM J. Math. Anal., 45 (2013), 547.  doi: 10.1137/120876174.  Google Scholar

[42]

J. B. Temple, Solutions in the large for the nonlinear hyperbolic conservation laws of gas dynamics,, J. Differential Equations, 41 (1981), 96.  doi: 10.1016/0022-0396(81)90055-3.  Google Scholar

[43]

W. G. Vincenti and C. H. Kruger, Introduction to Physical Gas Dynamics,, Cambridge Math. Lib., (1975).   Google Scholar

[44]

L. Wan, T. Wang and H.-J. Zhao, Asymptotic stability of wave patterns to compressible viscous and heat-conducting gases in the half space,, , ().   Google Scholar

[45]

L. Wan, T. Wang and Q.-Y. Zou, Stability of stationary solutions to the outflow problem for full compressible Navier-Stokes equations with large initial perturbation,, IOP Publishing Ltd & London Mathematical Society, 49 (2016).  doi: 10.1088/0951-7715/29/4/1329.  Google Scholar

[46]

T. Wang and H.-J. Zhao, Global large solutions to a viscous heat-conducting one-dimensional gas with temperature-dependent viscosity,, Preprint at , (2015).   Google Scholar

[47]

T. Wang, H.-J. Zhao and Q.-Y. Zou, One-dimensional compressible Navier-Stokes equations with large density oscillation,, Kinet. Relat. Models, 6 (2013), 649.  doi: 10.3934/krm.2013.6.649.  Google Scholar

[48]

Y. B. Zel'dovich and Y. P. Raizer, Physics of Shock Waves and High Temperature Hydrodynamic Phenomena, Vol. II,, Academic Press, (1967).   Google Scholar

[49]

A. A. Zlotnik and A. A. Amosov, On the stability of generalized solutions of equations of one-dimensional motion of a viscous heat-conducting gas,, Siberian Math. J., 38 (1997), 663.  doi: 10.1007/BF02674573.  Google Scholar

[1]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[2]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[3]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020270

[4]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[5]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[6]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[7]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[8]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[9]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[10]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[11]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[12]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[13]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[14]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[15]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[16]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[17]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[18]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[19]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[20]

Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (76)
  • HTML views (0)
  • Cited by (15)

Other articles
by authors

[Back to Top]