• Previous Article
    Local well-posedness for the tropical climate model with fractional velocity diffusion
  • KRM Home
  • This Issue
  • Next Article
    Global nonlinear stability of rarefaction waves for compressible Navier-Stokes equations with temperature and density dependent transport coefficients
September  2016, 9(3): 515-550. doi: 10.3934/krm.2016005

The relativistic Vlasov-Maxwell-Boltzmann system for short range interaction

1. 

Department of Mathematics, Jinan University, Guangzhou 510632, China

2. 

Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071

Received  October 2015 Revised  December 2015 Published  May 2016

We are concerned with the Cauchy problem of the relativistic Vlasov-Maxwell-Boltzmann system for short range interaction. For perturbative initial data with suitable regularity and integrability, we prove the large time stability of solutions to the relativistic Vlasov-Maxwell-Boltzmann system, and also obtain as a byproduct the convergence rates of solutions. Our proof is based on a new time-velocity weighted energy method and some optimal temporal decay estimates on the solution itself. The results also extend the case of ``hard ball" model considered by Guo and Strain [Comm. Math. Phys. 310: 49--673 (2012)] to the short range interactions.
Citation: Shuangqian Liu, Qinghua Xiao. The relativistic Vlasov-Maxwell-Boltzmann system for short range interaction. Kinetic & Related Models, 2016, 9 (3) : 515-550. doi: 10.3934/krm.2016005
References:
[1]

S. Calogero, The Newtonian limit of the relativistic Boltzmann equation,, J. Math. Phys., 45 (2004), 4042.  doi: 10.1063/1.1793328.  Google Scholar

[2]

C. Cercignani and G. M. Kremer, The Relativistic Boltzmann Equation: Theory and Applications, Progress in Mathematical Physics,, 22, (2002).  doi: 10.1007/978-3-0348-8165-4.  Google Scholar

[3]

S. R. de Groot, W. A. van Leeuwen and Ch. G. van Weert, Relativistic Kinetic Theory. Principles and Applications,, North-Holland Publishing Co., (1980).   Google Scholar

[4]

R. J. Duan, Global smooth dynamics of a fully ionized plasma with long-range collisions,, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 31 (2014), 751.  doi: 10.1016/j.anihpc.2013.07.004.  Google Scholar

[5]

R. J. Duan, Y. J. Lei, T. Yang and H. J. Zhao, The Vlasov-Maxwell-Boltzmann system near Maxwellians in the whole space with very soft potentials,, , ().   Google Scholar

[6]

R. J. Duan and S. Q. Liu, The Vlasov-Poisson-Boltzmann system without angular cutoff,, Comm. Math. Phys., 324 (2013), 1.  doi: 10.1007/s00220-013-1807-x.  Google Scholar

[7]

R. J. Duan, S. Q. Liu, T. Yang and H. J. Zhao, Stability of the nonrelativistic Vlasov- Maxwell-Boltzmann system for angular non-cutoff potentials,, Kinetic and Related Models, 6 (2013), 159.   Google Scholar

[8]

R. J. Duan, T. Yang and H. J. Zhao, The Vlasov-Poisson-Boltzmann system in the whole space: The hard potential case,, J. Differential Equations, 252 (2012), 6356.  doi: 10.1016/j.jde.2012.03.012.  Google Scholar

[9]

R. J. Duan, T. Yang and H. J. Zhao, The Vlasov-Poisson-Boltzmann system for soft potentials,, Mathematical Models and Methods in Applied Sciences, 23 (2013), 979.  doi: 10.1142/S0218202513500012.  Google Scholar

[10]

R. J. Duan and R. M. Strain, Optimal time decay of the Vlasov-Poisson-Boltzmann system in $\mathbb R^3$,, Arch. Ration. Mech. Anal., 199 (2011), 291.  doi: 10.1007/s00205-010-0318-6.  Google Scholar

[11]

R. J. Duan and R. M. Strain, Optimal large-time behavior of the Vlasov-Maxwell-Boltzmann system in the whole space,, Comm. Pure Appl. Math., 64 (2011), 1497.  doi: 10.1002/cpa.20381.  Google Scholar

[12]

M. Dudyński and M. L. Ekiel-J.ezewska, Global existence proof for relativistic Boltzmann equation,, J. Statist.Phys., 66 (1992), 991.  doi: 10.1007/BF01055712.  Google Scholar

[13]

M. Escobedo, S. Mischler and M. A. Valle, Homogeneous Boltzmann Equation in Quantum Relativistic Kinetic Theory,, Electronic Journal of Differential Equations, (2003).   Google Scholar

[14]

R. T. Glassey, The Cauchy Problem in Kinetic Theory,, Society for Industrial and Applied Mathematics (SIAM), (1996).  doi: 10.1137/1.9781611971477.  Google Scholar

[15]

R. T. Glassey, Global solutions to the Cauchy problem for the relativistic Boltzmann equation with near-vacuum data,, Comm. Math. Phys., 264 (2006), 705.  doi: 10.1007/s00220-006-1522-y.  Google Scholar

[16]

R. T. Glassey and W. A. Strauss, On the derivatives of the collision map of relativistic particles,, Transport Theory Statist. Phys., 20 (1991), 55.  doi: 10.1080/00411459108204708.  Google Scholar

[17]

R. T. Glassey and W. A. Strauss, Asymptotic stability of the relativistic Maxwellian,, Publ. Res. Inst. Math. Sci., 29 (1993), 301.  doi: 10.2977/prims/1195167275.  Google Scholar

[18]

R. T. Glassey and W. A. Strauss, Asymptotic stability of the relativistic Maxwellian via fourteen moments,, Transport Theory Statist. Phys., 24 (1995), 657.  doi: 10.1080/00411459508206020.  Google Scholar

[19]

Y. Guo, The Vlasov-Poisson-Landau system in a periodic box,, J. Amer. Math. Soc., 25 (2012), 759.  doi: 10.1090/S0894-0347-2011-00722-4.  Google Scholar

[20]

Y. Guo, The Vlasov-Maxwell-Boltzmann system near Maxwellians,, Invent. Math., 153 (2003), 593.  doi: 10.1007/s00222-003-0301-z.  Google Scholar

[21]

Y. Guo and R. M. Strain, Momentum regularity and stability of the relativistic Vlasov- Maxwell-Boltzmann system,, Comm. Math. Phys., 310 (2012), 649.  doi: 10.1007/s00220-012-1417-z.  Google Scholar

[22]

S. Y. Ha, Y. D. Kim, H. Lee and S. E. Noh, Asymptotic completeness for relativistic kinetic equations with short-range interaction forces,, Methods Appl. Anal., 14 (2007), 251.  doi: 10.4310/MAA.2007.v14.n3.a3.  Google Scholar

[23]

L. Hsiao and H. J. Yu, Asymptotic stability of the relativistic Maxwellian,, Math. Methods Appl. Sci., 29 (2006), 1481.  doi: 10.1002/mma.736.  Google Scholar

[24]

L. Hsiao and H. J. Yu, Global classical solutions to the initial value problem for the relativistic Landau equation,, J. Differential Equations, 228 (2006), 641.  doi: 10.1016/j.jde.2005.10.022.  Google Scholar

[25]

T. Hosono and S. Kawashima, Decay property of regularity-loss type and application to some nonlinear hyperbolic-elliptic system,, Math. Models Methods Appl. Sci., 16 (2006), 1839.  doi: 10.1142/S021820250600173X.  Google Scholar

[26]

N. A. Krall and A. W. Trivelpiece, Principles of Plasma Physics,, McGraw-Hill, (1973).   Google Scholar

[27]

Y. J. Lei and H.-J. Zhao, The Vlasov-Maxwell-Boltzmann system with a uniform ionic background near Maxwellians,, J. Differential Equations, 260 (2016), 2830.  doi: 10.1016/j.jde.2015.10.021.  Google Scholar

[28]

S. Q. Liu and H. J. Zhao, Optimal large-time decay of the relativistic Landau-Maxwell system,, J. Differential Equations, 256 (2014), 832.  doi: 10.1016/j.jde.2013.10.004.  Google Scholar

[29]

A. Majda and A. Bertozzi, Vorticity and Incompressible Flow,, Cambridge University Press, (2002).   Google Scholar

[30]

R. M. Strain, The Vlasov-Maxwell-Boltzmann system in the whole space,, Comm. Math. Phys., 268 (2006), 543.  doi: 10.1007/s00220-006-0109-y.  Google Scholar

[31]

R. M. Strain, Some Applications of an Energy Method in Collisional Kinetic Theory,, Phd Thesis, (2005).   Google Scholar

[32]

R. M. Strain and Y. Guo, Stability of the Relativistic Maxwellian in a Collisional Plasma,, Comm. Math. Phys., 251 (2004), 263.  doi: 10.1007/s00220-004-1151-2.  Google Scholar

[33]

R. M. Strain and Y. Guo, Almost exponential decay near Maxwellian,, Comm. Partial Differential Equations, 31 (2006), 417.  doi: 10.1080/03605300500361545.  Google Scholar

[34]

R. M. Strain and Y. Guo, Exponential decay for soft potentials near Maxwellian,, Arch. Ration. Mech. Anal., 187 (2008), 287.  doi: 10.1007/s00205-007-0067-3.  Google Scholar

[35]

R. M. Strain, Global Newtonian limit for the relativistic Boltzmann equation near vacuum,, SIAM J. Math. Anal., 42 (2010), 1568.  doi: 10.1137/090762695.  Google Scholar

[36]

R. M. Strain, Asymptotic stability of the relativistic Boltzmann equation for the soft-potentials,, Comm. Math. Phys., 300 (2010), 529.  doi: 10.1007/s00220-010-1129-1.  Google Scholar

[37]

R. M. Strain, Coordinates in the relativistic Boltzmann theory,, Kinetic and Related Models, 4 (2011), 345.  doi: 10.3934/krm.2011.4.345.  Google Scholar

[38]

R. M. Strain and K. Y. Zhu, Large-time decay of the soft potential relativistic Boltzmann equation in $\mathbb R^3$,, Kinetic and Related Models, 5 (2012), 383.  doi: 10.3934/krm.2012.5.383.  Google Scholar

[39]

C. Villani, A review of mathematical topics in collisional kinetic theory,, North-Holland, I (2002), 71.  doi: 10.1016/S1874-5792(02)80004-0.  Google Scholar

[40]

L. S. Wang, Q. H. Xiao, L. J. Xiong and H. J. Zhao, The Vlasov-Poisson-Boltzmann system near Maxwellians for long-range interactions,, Acta Mathematica Scientia, (2016).   Google Scholar

[41]

Q. H. Xiao, Large-time behavior of the two-species relativistic Landau-Maxwell system in $\mathbb R^3_x$,, J. Differential Equations, 259 (2015), 3520.  doi: 10.1016/j.jde.2015.04.031.  Google Scholar

[42]

Q. H. Xiao, L. J. Xiong and H. J. Zhao, The Vlasov-Poisson-Boltzmann system with angular cutoff for soft potentials,, J. Differential Equations, 255 (2013), 1196.  doi: 10.1016/j.jde.2013.05.005.  Google Scholar

[43]

Q. H. Xiao, L. J. Xiong and H. J. Zhao, The Vlasov-Poisson-Boltzmann system for non-cutoff hard potentials,, Sci. China Math., 57 (2014), 515.  doi: 10.1007/s11425-013-4712-z.  Google Scholar

[44]

Q. H. Xiao, L. J. Xiong and H. J. Zhao, The Vlasov-Poisson-Boltzmann system for the whole range of cutoff soft potentials,, , ().   Google Scholar

[45]

T. Yang and H. J. Yu, Hypocoercivity of the relativistic Boltzmann and Landau equa- tions in the whole space,, J. Differential Equations, 248 (2010), 1518.  doi: 10.1016/j.jde.2009.11.027.  Google Scholar

show all references

References:
[1]

S. Calogero, The Newtonian limit of the relativistic Boltzmann equation,, J. Math. Phys., 45 (2004), 4042.  doi: 10.1063/1.1793328.  Google Scholar

[2]

C. Cercignani and G. M. Kremer, The Relativistic Boltzmann Equation: Theory and Applications, Progress in Mathematical Physics,, 22, (2002).  doi: 10.1007/978-3-0348-8165-4.  Google Scholar

[3]

S. R. de Groot, W. A. van Leeuwen and Ch. G. van Weert, Relativistic Kinetic Theory. Principles and Applications,, North-Holland Publishing Co., (1980).   Google Scholar

[4]

R. J. Duan, Global smooth dynamics of a fully ionized plasma with long-range collisions,, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 31 (2014), 751.  doi: 10.1016/j.anihpc.2013.07.004.  Google Scholar

[5]

R. J. Duan, Y. J. Lei, T. Yang and H. J. Zhao, The Vlasov-Maxwell-Boltzmann system near Maxwellians in the whole space with very soft potentials,, , ().   Google Scholar

[6]

R. J. Duan and S. Q. Liu, The Vlasov-Poisson-Boltzmann system without angular cutoff,, Comm. Math. Phys., 324 (2013), 1.  doi: 10.1007/s00220-013-1807-x.  Google Scholar

[7]

R. J. Duan, S. Q. Liu, T. Yang and H. J. Zhao, Stability of the nonrelativistic Vlasov- Maxwell-Boltzmann system for angular non-cutoff potentials,, Kinetic and Related Models, 6 (2013), 159.   Google Scholar

[8]

R. J. Duan, T. Yang and H. J. Zhao, The Vlasov-Poisson-Boltzmann system in the whole space: The hard potential case,, J. Differential Equations, 252 (2012), 6356.  doi: 10.1016/j.jde.2012.03.012.  Google Scholar

[9]

R. J. Duan, T. Yang and H. J. Zhao, The Vlasov-Poisson-Boltzmann system for soft potentials,, Mathematical Models and Methods in Applied Sciences, 23 (2013), 979.  doi: 10.1142/S0218202513500012.  Google Scholar

[10]

R. J. Duan and R. M. Strain, Optimal time decay of the Vlasov-Poisson-Boltzmann system in $\mathbb R^3$,, Arch. Ration. Mech. Anal., 199 (2011), 291.  doi: 10.1007/s00205-010-0318-6.  Google Scholar

[11]

R. J. Duan and R. M. Strain, Optimal large-time behavior of the Vlasov-Maxwell-Boltzmann system in the whole space,, Comm. Pure Appl. Math., 64 (2011), 1497.  doi: 10.1002/cpa.20381.  Google Scholar

[12]

M. Dudyński and M. L. Ekiel-J.ezewska, Global existence proof for relativistic Boltzmann equation,, J. Statist.Phys., 66 (1992), 991.  doi: 10.1007/BF01055712.  Google Scholar

[13]

M. Escobedo, S. Mischler and M. A. Valle, Homogeneous Boltzmann Equation in Quantum Relativistic Kinetic Theory,, Electronic Journal of Differential Equations, (2003).   Google Scholar

[14]

R. T. Glassey, The Cauchy Problem in Kinetic Theory,, Society for Industrial and Applied Mathematics (SIAM), (1996).  doi: 10.1137/1.9781611971477.  Google Scholar

[15]

R. T. Glassey, Global solutions to the Cauchy problem for the relativistic Boltzmann equation with near-vacuum data,, Comm. Math. Phys., 264 (2006), 705.  doi: 10.1007/s00220-006-1522-y.  Google Scholar

[16]

R. T. Glassey and W. A. Strauss, On the derivatives of the collision map of relativistic particles,, Transport Theory Statist. Phys., 20 (1991), 55.  doi: 10.1080/00411459108204708.  Google Scholar

[17]

R. T. Glassey and W. A. Strauss, Asymptotic stability of the relativistic Maxwellian,, Publ. Res. Inst. Math. Sci., 29 (1993), 301.  doi: 10.2977/prims/1195167275.  Google Scholar

[18]

R. T. Glassey and W. A. Strauss, Asymptotic stability of the relativistic Maxwellian via fourteen moments,, Transport Theory Statist. Phys., 24 (1995), 657.  doi: 10.1080/00411459508206020.  Google Scholar

[19]

Y. Guo, The Vlasov-Poisson-Landau system in a periodic box,, J. Amer. Math. Soc., 25 (2012), 759.  doi: 10.1090/S0894-0347-2011-00722-4.  Google Scholar

[20]

Y. Guo, The Vlasov-Maxwell-Boltzmann system near Maxwellians,, Invent. Math., 153 (2003), 593.  doi: 10.1007/s00222-003-0301-z.  Google Scholar

[21]

Y. Guo and R. M. Strain, Momentum regularity and stability of the relativistic Vlasov- Maxwell-Boltzmann system,, Comm. Math. Phys., 310 (2012), 649.  doi: 10.1007/s00220-012-1417-z.  Google Scholar

[22]

S. Y. Ha, Y. D. Kim, H. Lee and S. E. Noh, Asymptotic completeness for relativistic kinetic equations with short-range interaction forces,, Methods Appl. Anal., 14 (2007), 251.  doi: 10.4310/MAA.2007.v14.n3.a3.  Google Scholar

[23]

L. Hsiao and H. J. Yu, Asymptotic stability of the relativistic Maxwellian,, Math. Methods Appl. Sci., 29 (2006), 1481.  doi: 10.1002/mma.736.  Google Scholar

[24]

L. Hsiao and H. J. Yu, Global classical solutions to the initial value problem for the relativistic Landau equation,, J. Differential Equations, 228 (2006), 641.  doi: 10.1016/j.jde.2005.10.022.  Google Scholar

[25]

T. Hosono and S. Kawashima, Decay property of regularity-loss type and application to some nonlinear hyperbolic-elliptic system,, Math. Models Methods Appl. Sci., 16 (2006), 1839.  doi: 10.1142/S021820250600173X.  Google Scholar

[26]

N. A. Krall and A. W. Trivelpiece, Principles of Plasma Physics,, McGraw-Hill, (1973).   Google Scholar

[27]

Y. J. Lei and H.-J. Zhao, The Vlasov-Maxwell-Boltzmann system with a uniform ionic background near Maxwellians,, J. Differential Equations, 260 (2016), 2830.  doi: 10.1016/j.jde.2015.10.021.  Google Scholar

[28]

S. Q. Liu and H. J. Zhao, Optimal large-time decay of the relativistic Landau-Maxwell system,, J. Differential Equations, 256 (2014), 832.  doi: 10.1016/j.jde.2013.10.004.  Google Scholar

[29]

A. Majda and A. Bertozzi, Vorticity and Incompressible Flow,, Cambridge University Press, (2002).   Google Scholar

[30]

R. M. Strain, The Vlasov-Maxwell-Boltzmann system in the whole space,, Comm. Math. Phys., 268 (2006), 543.  doi: 10.1007/s00220-006-0109-y.  Google Scholar

[31]

R. M. Strain, Some Applications of an Energy Method in Collisional Kinetic Theory,, Phd Thesis, (2005).   Google Scholar

[32]

R. M. Strain and Y. Guo, Stability of the Relativistic Maxwellian in a Collisional Plasma,, Comm. Math. Phys., 251 (2004), 263.  doi: 10.1007/s00220-004-1151-2.  Google Scholar

[33]

R. M. Strain and Y. Guo, Almost exponential decay near Maxwellian,, Comm. Partial Differential Equations, 31 (2006), 417.  doi: 10.1080/03605300500361545.  Google Scholar

[34]

R. M. Strain and Y. Guo, Exponential decay for soft potentials near Maxwellian,, Arch. Ration. Mech. Anal., 187 (2008), 287.  doi: 10.1007/s00205-007-0067-3.  Google Scholar

[35]

R. M. Strain, Global Newtonian limit for the relativistic Boltzmann equation near vacuum,, SIAM J. Math. Anal., 42 (2010), 1568.  doi: 10.1137/090762695.  Google Scholar

[36]

R. M. Strain, Asymptotic stability of the relativistic Boltzmann equation for the soft-potentials,, Comm. Math. Phys., 300 (2010), 529.  doi: 10.1007/s00220-010-1129-1.  Google Scholar

[37]

R. M. Strain, Coordinates in the relativistic Boltzmann theory,, Kinetic and Related Models, 4 (2011), 345.  doi: 10.3934/krm.2011.4.345.  Google Scholar

[38]

R. M. Strain and K. Y. Zhu, Large-time decay of the soft potential relativistic Boltzmann equation in $\mathbb R^3$,, Kinetic and Related Models, 5 (2012), 383.  doi: 10.3934/krm.2012.5.383.  Google Scholar

[39]

C. Villani, A review of mathematical topics in collisional kinetic theory,, North-Holland, I (2002), 71.  doi: 10.1016/S1874-5792(02)80004-0.  Google Scholar

[40]

L. S. Wang, Q. H. Xiao, L. J. Xiong and H. J. Zhao, The Vlasov-Poisson-Boltzmann system near Maxwellians for long-range interactions,, Acta Mathematica Scientia, (2016).   Google Scholar

[41]

Q. H. Xiao, Large-time behavior of the two-species relativistic Landau-Maxwell system in $\mathbb R^3_x$,, J. Differential Equations, 259 (2015), 3520.  doi: 10.1016/j.jde.2015.04.031.  Google Scholar

[42]

Q. H. Xiao, L. J. Xiong and H. J. Zhao, The Vlasov-Poisson-Boltzmann system with angular cutoff for soft potentials,, J. Differential Equations, 255 (2013), 1196.  doi: 10.1016/j.jde.2013.05.005.  Google Scholar

[43]

Q. H. Xiao, L. J. Xiong and H. J. Zhao, The Vlasov-Poisson-Boltzmann system for non-cutoff hard potentials,, Sci. China Math., 57 (2014), 515.  doi: 10.1007/s11425-013-4712-z.  Google Scholar

[44]

Q. H. Xiao, L. J. Xiong and H. J. Zhao, The Vlasov-Poisson-Boltzmann system for the whole range of cutoff soft potentials,, , ().   Google Scholar

[45]

T. Yang and H. J. Yu, Hypocoercivity of the relativistic Boltzmann and Landau equa- tions in the whole space,, J. Differential Equations, 248 (2010), 1518.  doi: 10.1016/j.jde.2009.11.027.  Google Scholar

[1]

Renjun Duan, Shuangqian Liu, Tong Yang, Huijiang Zhao. Stability of the nonrelativistic Vlasov-Maxwell-Boltzmann system for angular non-cutoff potentials. Kinetic & Related Models, 2013, 6 (1) : 159-204. doi: 10.3934/krm.2013.6.159

[2]

Robert M. Strain, Keya Zhu. Large-time decay of the soft potential relativistic Boltzmann equation in $\mathbb{R}^3_x$. Kinetic & Related Models, 2012, 5 (2) : 383-415. doi: 10.3934/krm.2012.5.383

[3]

Wenjia Jing, Panagiotis E. Souganidis, Hung V. Tran. Large time average of reachable sets and Applications to Homogenization of interfaces moving with oscillatory spatio-temporal velocity. Discrete & Continuous Dynamical Systems - S, 2018, 11 (5) : 915-939. doi: 10.3934/dcdss.2018055

[4]

Hai-Liang Li, Hongjun Yu, Mingying Zhong. Spectrum structure and optimal decay rate of the relativistic Vlasov-Poisson-Landau system. Kinetic & Related Models, 2017, 10 (4) : 1089-1125. doi: 10.3934/krm.2017043

[5]

Xiuting Li. The energy conservation for weak solutions to the relativistic Nordström-Vlasov system. Evolution Equations & Control Theory, 2016, 5 (1) : 135-145. doi: 10.3934/eect.2016.5.135

[6]

Mohammad Asadzadeh, Piotr Kowalczyk, Christoffer Standar. On hp-streamline diffusion and Nitsche schemes for the relativistic Vlasov-Maxwell system. Kinetic & Related Models, 2019, 12 (1) : 105-131. doi: 10.3934/krm.2019005

[7]

Stephen Pankavich, Nicholas Michalowski. Global classical solutions for the "One and one-half'' dimensional relativistic Vlasov-Maxwell-Fokker-Planck system. Kinetic & Related Models, 2015, 8 (1) : 169-199. doi: 10.3934/krm.2015.8.169

[8]

Mihai Bostan, Thierry Goudon. Low field regime for the relativistic Vlasov-Maxwell-Fokker-Planck system; the one and one half dimensional case. Kinetic & Related Models, 2008, 1 (1) : 139-170. doi: 10.3934/krm.2008.1.139

[9]

Robert M. Strain. Optimal time decay of the non cut-off Boltzmann equation in the whole space. Kinetic & Related Models, 2012, 5 (3) : 583-613. doi: 10.3934/krm.2012.5.583

[10]

Weike Wang, Xin Xu. Large time behavior of solution for the full compressible navier-stokes-maxwell system. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2283-2313. doi: 10.3934/cpaa.2015.14.2283

[11]

Huijiang Zhao. Large time decay estimates of solutions of nonlinear parabolic equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 69-114. doi: 10.3934/dcds.2002.8.69

[12]

Tariel Sanikidze, A.F. Tedeev. On the temporal decay estimates for the degenerate parabolic system. Communications on Pure & Applied Analysis, 2013, 12 (4) : 1755-1768. doi: 10.3934/cpaa.2013.12.1755

[13]

Sergiu Klainerman, Gigliola Staffilani. A new approach to study the Vlasov-Maxwell system. Communications on Pure & Applied Analysis, 2002, 1 (1) : 103-125. doi: 10.3934/cpaa.2002.1.103

[14]

Lan Luo, Hongjun Yu. Global solutions to the relativistic Vlasov-Poisson-Fokker-Planck system. Kinetic & Related Models, 2016, 9 (2) : 393-405. doi: 10.3934/krm.2016.9.393

[15]

Frank Jochmann. Decay of the polarization field in a Maxwell Bloch system. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 663-676. doi: 10.3934/dcds.2003.9.663

[16]

Irene M. Gamba, Maria Pia Gualdani, Christof Sparber. A note on the time decay of solutions for the linearized Wigner-Poisson system. Kinetic & Related Models, 2009, 2 (1) : 181-189. doi: 10.3934/krm.2009.2.181

[17]

Seung-Yeal Ha, Eunhee Jeong, Robert M. Strain. Uniform $L^1$-stability of the relativistic Boltzmann equation near vacuum. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1141-1161. doi: 10.3934/cpaa.2013.12.1141

[18]

Alessandro Ciallella, Emilio N. M. Cirillo. Linear Boltzmann dynamics in a strip with large reflective obstacles: Stationary state and residence time. Kinetic & Related Models, 2018, 11 (6) : 1475-1501. doi: 10.3934/krm.2018058

[19]

Jérome Lohéac, Jean-François Scheid. Time optimal control for a nonholonomic system with state constraint. Mathematical Control & Related Fields, 2013, 3 (2) : 185-208. doi: 10.3934/mcrf.2013.3.185

[20]

Ahmed Bonfoh, Cyril D. Enyi. Large time behavior of a conserved phase-field system. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1077-1105. doi: 10.3934/cpaa.2016.15.1077

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (17)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]