September  2016, 9(3): 551-570. doi: 10.3934/krm.2016006

Local well-posedness for the tropical climate model with fractional velocity diffusion

1. 

Department of Mathematics, Zhejiang Normal University, Jinhua 321004, Zhejiang, China

2. 

School of Mathematical Sciences, Zhejiang University, Hangzhou 310027, Zhejiang, China

Received  September 2015 Revised  December 2015 Published  May 2016

This paper deals with the Cauchy problem for tropical climate model with the fractional velocity diffusion which was derived by Frierson-Majda-Pauluis in [16]. We establish the local well-posedness of strong solutions to this generalized model.
Citation: Caochuan Ma, Zaihong Jiang, Renhui Wan. Local well-posedness for the tropical climate model with fractional velocity diffusion. Kinetic & Related Models, 2016, 9 (3) : 551-570. doi: 10.3934/krm.2016006
References:
[1]

P. W. Bates, On some nonlocal evolution equations arising in materials science,, in: Nonlinear Dynamics and Evolution Equations, 48 (2006), 13.   Google Scholar

[2]

H. Bahouri, J. Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations,, Springer-Verlag, (2011).  doi: 10.1007/978-3-642-16830-7.  Google Scholar

[3]

J. Bergh and J. Löfström, Interpolation Spaces, An Introduction,, Springer-Verlag, (1976).  doi: 10.1007/978-3-642-66451-9.  Google Scholar

[4]

P. Biler, G. Karch and W. A. Woyczyński, Critical nonlinearity exponent and self-similar asymptotics for Lévy conservation laws,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 18 (2001), 613.  doi: 10.1016/S0294-1449(01)00080-4.  Google Scholar

[5]

J. Bourgain, H. Brezis and P. Mironescu, Limiting embedding theorems for $W^{s,p}$ when $s \rightarrow 1$ and applications,, J. Anal. Math., 87 (2002), 77.  doi: 10.1007/BF02868470.  Google Scholar

[6]

H. Brezis and P. Mironescu, Gagliardo-Nirenberg, composition and products in fractional Sobolev spaces,, J. Evol. Equ., 1 (2001), 387.  doi: 10.1007/PL00001378.  Google Scholar

[7]

L. A. Caffarelli, Further regularity for the Signorini problem,, Comm. Partial Differential Equations, 4 (1979), 1067.  doi: 10.1080/03605307908820119.  Google Scholar

[8]

L. A. Caffarelli and A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation,, Ann. of Math., 171 (2010), 1903.  doi: 10.4007/annals.2010.171.1903.  Google Scholar

[9]

C. Cao and E. S. Titi, Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics,, Ann. of Math., 166 (2007), 245.  doi: 10.4007/annals.2007.166.245.  Google Scholar

[10]

C. Cao, S. Ibrahim, K. Nakanishi and E. S. Titi, Finite-time blowup for the inviscid primitive equations of oceanic and atmospheric dynamics,, Comm. Math. Phys., 337 (2015), 473.  doi: 10.1007/s00220-015-2365-1.  Google Scholar

[11]

R. Cont and P. Tankov, Financial Modelling with Jump Processes,, Chapman & Hall/CRC Financial Mathematics Series, (2004).  doi: 10.1201/9780203485217.  Google Scholar

[12]

W. Craig and P. A. Worfolk, An integrable normal form for water waves in infinite depth,, Phys. D, 84 (1995), 513.  doi: 10.1016/0167-2789(95)00067-E.  Google Scholar

[13]

G. Duvaut and J. L. Lions, Inequalities in Mechanics and Physics,, Springer-Verlag, (1976).  doi: 10.1007/978-3-642-66165-5.  Google Scholar

[14]

C. Fefferman and R. de la Llave, Relativistic stability of matter,, I. Rev. Mat. Iberoamericana, 2 (1986), 119.  doi: 10.4171/RMI/30.  Google Scholar

[15]

C. L. Feffermana, D. S. McCormick, J. C. Robinsonb and J. L. Rodrigo, Higher order commutator estimates and local existence for the non-resistive MHD and related models,, J. Funct. Anal., 267 (2014), 1035.  doi: 10.1016/j.jfa.2014.03.021.  Google Scholar

[16]

D. M. W. Frierson, A. J. Majda and O. M. Pauluis, Large scale dynamics of precipitation fronts in the tropical atmosphere: A novel relaxation limit,, Commun. Math. Sci., 2 (2004), 591.  doi: 10.4310/CMS.2004.v2.n4.a3.  Google Scholar

[17]

Z. Jiang and Y. Zhou, Local existence for the generalized MHD equations,, preprint., ().   Google Scholar

[18]

C. E. Kenig, G. Ponce and L. Vega, Well-posedness of the initial value problem for the Korteweg-de Vries equation,, J. Amer. Math. Soc., 4 (1991), 323.  doi: 10.1090/S0894-0347-1991-1086966-0.  Google Scholar

[19]

A. Kiselev, F. Nazarov and A. Volberg, Global well-posedness for the critical 2D dissipative quasi-geostrophic equation,, Invent. Math., 167 (2007), 445.  doi: 10.1007/s00222-006-0020-3.  Google Scholar

[20]

G. M. Kobelkov, Existence of a solution in the large for the 3D large-scale ocean dynamics equations,, C. R. Math. Acad. Sci. Paris, 343 (2006), 283.  doi: 10.1016/j.crma.2006.04.020.  Google Scholar

[21]

I. Kukavica, R. Temam, V. C. Vicol and M. Ziane, Existence and uniqueness of solutions for the hydrostatic Euler equations on a bounded domain with analytic data,, C. R. Math. Acad. Sci. Paris, 348 (2010), 639.  doi: 10.1016/j.crma.2010.03.023.  Google Scholar

[22]

I. Kukavica, R. Temam, V. C. Vicol and M. Ziane, Local existence and uniqueness for the hydrostatic euler equations on a bounded domain,, J. Differential Equations, 250 (2011), 1719.  doi: 10.1016/j.jde.2010.07.032.  Google Scholar

[23]

J. Li and E. S. Titi, Global well-posedness of strong solutions to a tropical climate model,, preprint, ().   Google Scholar

[24]

J. L. Lions, R. Temam and S. Wang, New formulations of the primitive equationsof the atmosphere and appliations,, Nonlinearity, 5 (1992), 237.   Google Scholar

[25]

J. L. Lions, R. Temam and S. Wang, On the equations of the large-scale ocean,, Nonlinearity, 5 (1992), 1007.  doi: 10.1088/0951-7715/5/5/002.  Google Scholar

[26]

J. L. Lions, R. Temam and S. Wang, Mathematical study of the coupled models of atmosphere and ocean (CAO III),, J. Math. Pures Appl., 74 (1995), 105.   Google Scholar

[27]

A. J. Majda and A. L. Bertozzi, Vorticity and Incompressible Flow,, Cambridge University Press, (2002).  doi: 10.1017/CBO9780511613203.  Google Scholar

[28]

R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach,, Phys. Rep., 339 (2000).  doi: 10.1016/S0370-1573(00)00070-3.  Google Scholar

[29]

C. Miao, J. Wu and Z. Zhang, Littlewood-Paley Theory and Its Applications in Partial Differential Equations of Fluid Dynamics (in Chinese),, Science Press, (2012).   Google Scholar

[30]

D. P. Nicholls and M. Taber, Joint analyticity and analytic continuation of Dirichlet-Neumann operators on doubly perturbed domains,, J. Math. Fluid Mech., 10 (2008), 238.  doi: 10.1007/s00021-006-0231-9.  Google Scholar

[31]

T. Runst and W. Sickel, Sobolev Spaces of fractional order, Nemytskij operators and Nonlinear Partial Differential Equations,, Walter de Gruyter, (1996).  doi: 10.1515/9783110812411.  Google Scholar

[32]

A. Signorini, Questioni di elasticità non linearizzata e semilinearizzata,, Rend. mat. e Appl, 18 (1959), 95.   Google Scholar

[33]

J. J. Stoker, Water Waves: The Mathematical Theory with Applications. Pure and Applied Mathematics, Vol. IV.,, Interscience Publishers, (1957).   Google Scholar

[34]

J. F. Toland, The Peierls-Nabarro and Benjamin-Ono equations,, J. Funct. Anal., 145 (1997), 136.  doi: 10.1006/jfan.1996.3016.  Google Scholar

[35]

H. Triebel, Theory of Function Spaces II,, Birkhauser Verlag, (1992).  doi: 10.1090/S0002-9939-2014-12243-X.  Google Scholar

[36]

T. K. Wong, Blowup of solutions of the hydrostatic Euler equations,, Proc. Amer. Math. Soc., 143 (2015), 1119.  doi: 10.1090/S0002-9939-2014-12243-X.  Google Scholar

show all references

References:
[1]

P. W. Bates, On some nonlocal evolution equations arising in materials science,, in: Nonlinear Dynamics and Evolution Equations, 48 (2006), 13.   Google Scholar

[2]

H. Bahouri, J. Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations,, Springer-Verlag, (2011).  doi: 10.1007/978-3-642-16830-7.  Google Scholar

[3]

J. Bergh and J. Löfström, Interpolation Spaces, An Introduction,, Springer-Verlag, (1976).  doi: 10.1007/978-3-642-66451-9.  Google Scholar

[4]

P. Biler, G. Karch and W. A. Woyczyński, Critical nonlinearity exponent and self-similar asymptotics for Lévy conservation laws,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 18 (2001), 613.  doi: 10.1016/S0294-1449(01)00080-4.  Google Scholar

[5]

J. Bourgain, H. Brezis and P. Mironescu, Limiting embedding theorems for $W^{s,p}$ when $s \rightarrow 1$ and applications,, J. Anal. Math., 87 (2002), 77.  doi: 10.1007/BF02868470.  Google Scholar

[6]

H. Brezis and P. Mironescu, Gagliardo-Nirenberg, composition and products in fractional Sobolev spaces,, J. Evol. Equ., 1 (2001), 387.  doi: 10.1007/PL00001378.  Google Scholar

[7]

L. A. Caffarelli, Further regularity for the Signorini problem,, Comm. Partial Differential Equations, 4 (1979), 1067.  doi: 10.1080/03605307908820119.  Google Scholar

[8]

L. A. Caffarelli and A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation,, Ann. of Math., 171 (2010), 1903.  doi: 10.4007/annals.2010.171.1903.  Google Scholar

[9]

C. Cao and E. S. Titi, Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics,, Ann. of Math., 166 (2007), 245.  doi: 10.4007/annals.2007.166.245.  Google Scholar

[10]

C. Cao, S. Ibrahim, K. Nakanishi and E. S. Titi, Finite-time blowup for the inviscid primitive equations of oceanic and atmospheric dynamics,, Comm. Math. Phys., 337 (2015), 473.  doi: 10.1007/s00220-015-2365-1.  Google Scholar

[11]

R. Cont and P. Tankov, Financial Modelling with Jump Processes,, Chapman & Hall/CRC Financial Mathematics Series, (2004).  doi: 10.1201/9780203485217.  Google Scholar

[12]

W. Craig and P. A. Worfolk, An integrable normal form for water waves in infinite depth,, Phys. D, 84 (1995), 513.  doi: 10.1016/0167-2789(95)00067-E.  Google Scholar

[13]

G. Duvaut and J. L. Lions, Inequalities in Mechanics and Physics,, Springer-Verlag, (1976).  doi: 10.1007/978-3-642-66165-5.  Google Scholar

[14]

C. Fefferman and R. de la Llave, Relativistic stability of matter,, I. Rev. Mat. Iberoamericana, 2 (1986), 119.  doi: 10.4171/RMI/30.  Google Scholar

[15]

C. L. Feffermana, D. S. McCormick, J. C. Robinsonb and J. L. Rodrigo, Higher order commutator estimates and local existence for the non-resistive MHD and related models,, J. Funct. Anal., 267 (2014), 1035.  doi: 10.1016/j.jfa.2014.03.021.  Google Scholar

[16]

D. M. W. Frierson, A. J. Majda and O. M. Pauluis, Large scale dynamics of precipitation fronts in the tropical atmosphere: A novel relaxation limit,, Commun. Math. Sci., 2 (2004), 591.  doi: 10.4310/CMS.2004.v2.n4.a3.  Google Scholar

[17]

Z. Jiang and Y. Zhou, Local existence for the generalized MHD equations,, preprint., ().   Google Scholar

[18]

C. E. Kenig, G. Ponce and L. Vega, Well-posedness of the initial value problem for the Korteweg-de Vries equation,, J. Amer. Math. Soc., 4 (1991), 323.  doi: 10.1090/S0894-0347-1991-1086966-0.  Google Scholar

[19]

A. Kiselev, F. Nazarov and A. Volberg, Global well-posedness for the critical 2D dissipative quasi-geostrophic equation,, Invent. Math., 167 (2007), 445.  doi: 10.1007/s00222-006-0020-3.  Google Scholar

[20]

G. M. Kobelkov, Existence of a solution in the large for the 3D large-scale ocean dynamics equations,, C. R. Math. Acad. Sci. Paris, 343 (2006), 283.  doi: 10.1016/j.crma.2006.04.020.  Google Scholar

[21]

I. Kukavica, R. Temam, V. C. Vicol and M. Ziane, Existence and uniqueness of solutions for the hydrostatic Euler equations on a bounded domain with analytic data,, C. R. Math. Acad. Sci. Paris, 348 (2010), 639.  doi: 10.1016/j.crma.2010.03.023.  Google Scholar

[22]

I. Kukavica, R. Temam, V. C. Vicol and M. Ziane, Local existence and uniqueness for the hydrostatic euler equations on a bounded domain,, J. Differential Equations, 250 (2011), 1719.  doi: 10.1016/j.jde.2010.07.032.  Google Scholar

[23]

J. Li and E. S. Titi, Global well-posedness of strong solutions to a tropical climate model,, preprint, ().   Google Scholar

[24]

J. L. Lions, R. Temam and S. Wang, New formulations of the primitive equationsof the atmosphere and appliations,, Nonlinearity, 5 (1992), 237.   Google Scholar

[25]

J. L. Lions, R. Temam and S. Wang, On the equations of the large-scale ocean,, Nonlinearity, 5 (1992), 1007.  doi: 10.1088/0951-7715/5/5/002.  Google Scholar

[26]

J. L. Lions, R. Temam and S. Wang, Mathematical study of the coupled models of atmosphere and ocean (CAO III),, J. Math. Pures Appl., 74 (1995), 105.   Google Scholar

[27]

A. J. Majda and A. L. Bertozzi, Vorticity and Incompressible Flow,, Cambridge University Press, (2002).  doi: 10.1017/CBO9780511613203.  Google Scholar

[28]

R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach,, Phys. Rep., 339 (2000).  doi: 10.1016/S0370-1573(00)00070-3.  Google Scholar

[29]

C. Miao, J. Wu and Z. Zhang, Littlewood-Paley Theory and Its Applications in Partial Differential Equations of Fluid Dynamics (in Chinese),, Science Press, (2012).   Google Scholar

[30]

D. P. Nicholls and M. Taber, Joint analyticity and analytic continuation of Dirichlet-Neumann operators on doubly perturbed domains,, J. Math. Fluid Mech., 10 (2008), 238.  doi: 10.1007/s00021-006-0231-9.  Google Scholar

[31]

T. Runst and W. Sickel, Sobolev Spaces of fractional order, Nemytskij operators and Nonlinear Partial Differential Equations,, Walter de Gruyter, (1996).  doi: 10.1515/9783110812411.  Google Scholar

[32]

A. Signorini, Questioni di elasticità non linearizzata e semilinearizzata,, Rend. mat. e Appl, 18 (1959), 95.   Google Scholar

[33]

J. J. Stoker, Water Waves: The Mathematical Theory with Applications. Pure and Applied Mathematics, Vol. IV.,, Interscience Publishers, (1957).   Google Scholar

[34]

J. F. Toland, The Peierls-Nabarro and Benjamin-Ono equations,, J. Funct. Anal., 145 (1997), 136.  doi: 10.1006/jfan.1996.3016.  Google Scholar

[35]

H. Triebel, Theory of Function Spaces II,, Birkhauser Verlag, (1992).  doi: 10.1090/S0002-9939-2014-12243-X.  Google Scholar

[36]

T. K. Wong, Blowup of solutions of the hydrostatic Euler equations,, Proc. Amer. Math. Soc., 143 (2015), 1119.  doi: 10.1090/S0002-9939-2014-12243-X.  Google Scholar

[1]

Jinkai Li, Edriss Titi. Global well-posedness of strong solutions to a tropical climate model. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4495-4516. doi: 10.3934/dcds.2016.36.4495

[2]

Keyan Wang. Global well-posedness for a transport equation with non-local velocity and critical diffusion. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1203-1210. doi: 10.3934/cpaa.2008.7.1203

[3]

Paola Goatin, Sheila Scialanga. Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity. Networks & Heterogeneous Media, 2016, 11 (1) : 107-121. doi: 10.3934/nhm.2016.11.107

[4]

Junxiong Jia, Jigen Peng, Kexue Li. Well-posedness of abstract distributed-order fractional diffusion equations. Communications on Pure & Applied Analysis, 2014, 13 (2) : 605-621. doi: 10.3934/cpaa.2014.13.605

[5]

Boqing Dong, Wenjuan Wang, Jiahong Wu, Hui Zhang. Global regularity results for the climate model with fractional dissipation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 211-229. doi: 10.3934/dcdsb.2018102

[6]

Boris Kolev. Local well-posedness of the EPDiff equation: A survey. Journal of Geometric Mechanics, 2017, 9 (2) : 167-189. doi: 10.3934/jgm.2017007

[7]

Alessio Fiscella, Enzo Vitillaro. Local Hadamard well--posedness and blow--up for reaction--diffusion equations with non--linear dynamical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5015-5047. doi: 10.3934/dcds.2013.33.5015

[8]

Kazuo Yamazaki, Xueying Wang. Global well-posedness and asymptotic behavior of solutions to a reaction-convection-diffusion cholera epidemic model. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1297-1316. doi: 10.3934/dcdsb.2016.21.1297

[9]

Peng Jiang. Global well-posedness and large time behavior of classical solutions to the diffusion approximation model in radiation hydrodynamics. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 2045-2063. doi: 10.3934/dcds.2017087

[10]

Maxim A. Olshanskii, Leo G. Rebholz, Abner J. Salgado. On well-posedness of a velocity-vorticity formulation of the stationary Navier-Stokes equations with no-slip boundary conditions. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3459-3477. doi: 10.3934/dcds.2018148

[11]

Renhui Wan. Global well-posedness for the 2D Boussinesq equations with a velocity damping term. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2709-2730. doi: 10.3934/dcds.2019113

[12]

Elaine Cozzi, James P. Kelliher. Well-posedness of the 2D Euler equations when velocity grows at infinity. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2361-2392. doi: 10.3934/dcds.2019100

[13]

Yong Zhou, Jishan Fan. Local well-posedness for the ideal incompressible density dependent magnetohydrodynamic equations. Communications on Pure & Applied Analysis, 2010, 9 (3) : 813-818. doi: 10.3934/cpaa.2010.9.813

[14]

Timur Akhunov. Local well-posedness of quasi-linear systems generalizing KdV. Communications on Pure & Applied Analysis, 2013, 12 (2) : 899-921. doi: 10.3934/cpaa.2013.12.899

[15]

Hung Luong. Local well-posedness for the Zakharov system on the background of a line soliton. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2657-2682. doi: 10.3934/cpaa.2018126

[16]

Hartmut Pecher. Local well-posedness for the nonlinear Dirac equation in two space dimensions. Communications on Pure & Applied Analysis, 2014, 13 (2) : 673-685. doi: 10.3934/cpaa.2014.13.673

[17]

Jae Min Lee, Stephen C. Preston. Local well-posedness of the Camassa-Holm equation on the real line. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3285-3299. doi: 10.3934/dcds.2017139

[18]

Reinhard Racke, Jürgen Saal. Hyperbolic Navier-Stokes equations I: Local well-posedness. Evolution Equations & Control Theory, 2012, 1 (1) : 195-215. doi: 10.3934/eect.2012.1.195

[19]

Yongye Zhao, Yongsheng Li, Wei Yan. Local Well-posedness and Persistence Property for the Generalized Novikov Equation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 803-820. doi: 10.3934/dcds.2014.34.803

[20]

Elissar Nasreddine. Well-posedness for a model of individual clustering. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2647-2668. doi: 10.3934/dcdsb.2013.18.2647

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (17)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]