\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Local well-posedness for the tropical climate model with fractional velocity diffusion

Abstract Related Papers Cited by
  • This paper deals with the Cauchy problem for tropical climate model with the fractional velocity diffusion which was derived by Frierson-Majda-Pauluis in [16]. We establish the local well-posedness of strong solutions to this generalized model.
    Mathematics Subject Classification: Primary: 35Q35, 35Q85; Secondary: 35B65, 76W05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    P. W. Bates, On some nonlocal evolution equations arising in materials science, in: Nonlinear Dynamics and Evolution Equations, Fields Inst. Commun., 48 (2006), 13-52.

    [2]

    H. Bahouri, J. Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Springer-Verlag, Berlin, 2011.doi: 10.1007/978-3-642-16830-7.

    [3]

    J. Bergh and J. Löfström, Interpolation Spaces, An Introduction, Springer-Verlag, Berlin-New York, 1976.doi: 10.1007/978-3-642-66451-9.

    [4]

    P. Biler, G. Karch and W. A. Woyczyński, Critical nonlinearity exponent and self-similar asymptotics for Lévy conservation laws, Ann. Inst. H. Poincaré Anal. Non Linéaire, 18 (2001), 613-637.doi: 10.1016/S0294-1449(01)00080-4.

    [5]

    J. Bourgain, H. Brezis and P. Mironescu, Limiting embedding theorems for $W^{s,p}$ when $s \rightarrow 1$ and applications, J. Anal. Math., 87 (2002), 77-101.doi: 10.1007/BF02868470.

    [6]

    H. Brezis and P. Mironescu, Gagliardo-Nirenberg, composition and products in fractional Sobolev spaces, J. Evol. Equ. , 1 (2001), 387-404.doi: 10.1007/PL00001378.

    [7]

    L. A. Caffarelli, Further regularity for the Signorini problem, Comm. Partial Differential Equations, 4 (1979), 1067-1075.doi: 10.1080/03605307908820119.

    [8]

    L. A. Caffarelli and A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Ann. of Math., 171 (2010), 1903-1930.doi: 10.4007/annals.2010.171.1903.

    [9]

    C. Cao and E. S. Titi, Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics, Ann. of Math., 166 (2007), 245-267.doi: 10.4007/annals.2007.166.245.

    [10]

    C. Cao, S. Ibrahim, K. Nakanishi and E. S. Titi, Finite-time blowup for the inviscid primitive equations of oceanic and atmospheric dynamics, Comm. Math. Phys., 337 (2015), 473-482.doi: 10.1007/s00220-015-2365-1.

    [11]

    R. Cont and P. Tankov, Financial Modelling with Jump Processes, Chapman & Hall/CRC Financial Mathematics Series, Chapman & Hall/CRC, Boca Raton, 2004.doi: 10.1201/9780203485217.

    [12]

    W. Craig and P. A. Worfolk, An integrable normal form for water waves in infinite depth, Phys. D, 84 (1995), 513-531.doi: 10.1016/0167-2789(95)00067-E.

    [13]

    G. Duvaut and J. L. Lions, Inequalities in Mechanics and Physics, Springer-Verlag, Berlin-New York, 1976.doi: 10.1007/978-3-642-66165-5.

    [14]

    C. Fefferman and R. de la Llave, Relativistic stability of matter, I. Rev. Mat. Iberoamericana, 2 (1986), 119-213.doi: 10.4171/RMI/30.

    [15]

    C. L. Feffermana, D. S. McCormick, J. C. Robinsonb and J. L. Rodrigo, Higher order commutator estimates and local existence for the non-resistive MHD and related models, J. Funct. Anal., 267 (2014), 1035-1056.doi: 10.1016/j.jfa.2014.03.021.

    [16]

    D. M. W. Frierson, A. J. Majda and O. M. Pauluis, Large scale dynamics of precipitation fronts in the tropical atmosphere: A novel relaxation limit, Commun. Math. Sci., 2 (2004), 591-626.doi: 10.4310/CMS.2004.v2.n4.a3.

    [17]

    Z. Jiang and Y. Zhou, Local existence for the generalized MHD equations, preprint.

    [18]

    C. E. Kenig, G. Ponce and L. Vega, Well-posedness of the initial value problem for the Korteweg-de Vries equation, J. Amer. Math. Soc., 4 (1991), 323-347.doi: 10.1090/S0894-0347-1991-1086966-0.

    [19]

    A. Kiselev, F. Nazarov and A. Volberg, Global well-posedness for the critical 2D dissipative quasi-geostrophic equation, Invent. Math., 167 (2007), 445-453.doi: 10.1007/s00222-006-0020-3.

    [20]

    G. M. Kobelkov, Existence of a solution in the large for the 3D large-scale ocean dynamics equations, C. R. Math. Acad. Sci. Paris, 343 (2006), 283-286.doi: 10.1016/j.crma.2006.04.020.

    [21]

    I. Kukavica, R. Temam, V. C. Vicol and M. Ziane, Existence and uniqueness of solutions for the hydrostatic Euler equations on a bounded domain with analytic data, C. R. Math. Acad. Sci. Paris, 348 (2010), 639-645.doi: 10.1016/j.crma.2010.03.023.

    [22]

    I. Kukavica, R. Temam, V. C. Vicol and M. Ziane, Local existence and uniqueness for the hydrostatic euler equations on a bounded domain, J. Differential Equations, 250 (2011), 1719-1746.doi: 10.1016/j.jde.2010.07.032.

    [23]

    J. Li and E. S. Titi, Global well-posedness of strong solutions to a tropical climate model, preprint, arXiv:1504.05285v1.

    [24]

    J. L. Lions, R. Temam and S. Wang, New formulations of the primitive equationsof the atmosphere and appliations, Nonlinearity, 5 (1992), 237-288.

    [25]

    J. L. Lions, R. Temam and S. Wang, On the equations of the large-scale ocean, Nonlinearity, 5 (1992), 1007-1053.doi: 10.1088/0951-7715/5/5/002.

    [26]

    J. L. Lions, R. Temam and S. Wang, Mathematical study of the coupled models of atmosphere and ocean (CAO III), J. Math. Pures Appl., 74 (1995), 105-163.

    [27]

    A. J. Majda and A. L. Bertozzi, Vorticity and Incompressible Flow, Cambridge University Press, Cambridge, 2002.doi: 10.1017/CBO9780511613203.

    [28]

    R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep., 339 (2000), 77pp.doi: 10.1016/S0370-1573(00)00070-3.

    [29]

    C. Miao, J. Wu and Z. Zhang, Littlewood-Paley Theory and Its Applications in Partial Differential Equations of Fluid Dynamics (in Chinese), Science Press, Beijing, China, 2012.

    [30]

    D. P. Nicholls and M. Taber, Joint analyticity and analytic continuation of Dirichlet-Neumann operators on doubly perturbed domains, J. Math. Fluid Mech., 10 (2008), 238-271.doi: 10.1007/s00021-006-0231-9.

    [31]

    T. Runst and W. Sickel, Sobolev Spaces of fractional order, Nemytskij operators and Nonlinear Partial Differential Equations, Walter de Gruyter, Berlin, New York, 1996.doi: 10.1515/9783110812411.

    [32]

    A. Signorini, Questioni di elasticità non linearizzata e semilinearizzata, Rend. mat. e Appl, 18 (1959), 95-139.

    [33]

    J. J. Stoker, Water Waves: The Mathematical Theory with Applications. Pure and Applied Mathematics, Vol. IV., Interscience Publishers, Inc., New York, 1957.

    [34]

    J. F. Toland, The Peierls-Nabarro and Benjamin-Ono equations, J. Funct. Anal., 145 (1997), 136-150.doi: 10.1006/jfan.1996.3016.

    [35]

    H. Triebel, Theory of Function Spaces II, Birkhauser Verlag, 1992.doi: 10.1090/S0002-9939-2014-12243-X.

    [36]

    T. K. Wong, Blowup of solutions of the hydrostatic Euler equations, Proc. Amer. Math. Soc., 143 (2015), 1119-1125.doi: 10.1090/S0002-9939-2014-12243-X.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(247) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return