Citation: |
[1] |
M. Bisi and L. Desvillettes, From reactive Boltzmann equations to reaction-diffusion systems, J. Stat. Phys., 124 (2006), 881-912.doi: 10.1007/s10955-005-8075-x. |
[2] |
D. Bothe and D. Hilhorst, A reaction-diffusion system with fast reversible reaction, J. Math. Anal. Appl., 286 (2003), 125-135.doi: 10.1016/S0022-247X(03)00457-8. |
[3] |
J. Carrillo, L. Desvillettes and K. Fellner, Fast-reaction limit for the inhomogeneous Aizenman-Bak model, Kinetic and Related Models, 1 (2008), 127-137.doi: 10.3934/krm.2008.1.127. |
[4] |
J. Carrillo, L. Desvillettes and K. Fellner, Rigorous derivation of a nonlinear diffusion equation as fast-reaction limit of a continuous coagulation-fragmentation model with diffusion, Comm. Part. Diff. Eq., 34 (2009), 1338-1351.doi: 10.1080/03605300903225396. |
[5] |
I. Choquet, P. Degond and C. Schmeiser, Energy-transport models for charge carriers involving impact ionization in semiconductors, Transport Theory and Statistical Physics, 32 (2003), 99-132. |
[6] |
P. Degond, A. Nouri and C. Schmeiser, Macroscopic models for the ionization in the presence of strong electric fields, Transport Theory and Stat. Phys., 29 (2000), 551-561.doi: 10.1080/00411450008205891. |
[7] |
L. Desvillettes and A. Trescases, New results for triangular reaction cross diffusion system, J. Math. Anal. Appl., 430 (2015), 32-59, arXiv:1408.5814.doi: 10.1016/j.jmaa.2015.03.078. |
[8] |
J. Dolbeault, C. Mouhot and C. Schmeiser, Hypocoercivity for kinetic equations with linear relaxation terms, C.R. Acad. Sci. Paris, 347 (2009), 511-516.doi: 10.1016/j.crma.2009.02.025. |
[9] |
J. Dolbeault, C. Mouhot and C. Schmeiser, Hypocoercivity for linear kinetic equations conserving mass, Trans. AMS, 367 (2015), 3807-3828.doi: 10.1090/S0002-9947-2015-06012-7. |
[10] |
F. Golse, From kinetic to macroscopic models, in Kinetic Equations and Asymptotic Theory, (eds. B. Perthame and L. Desvillettes), Series in Appl. Math. 4, Gauthier, Villars, (2000), 41-126. |
[11] |
Y. Guo, The Vlasov-Poisson-Boltzmann system near Maxwellians, Comm. Pure Appl. Math., 55 (2002), 1104-1135.doi: 10.1002/cpa.10040. |
[12] |
D. Hilhorst, R. van der Hout and L. A. Peletier, Nonlinear diffusion in the presence of fast reaction, Nonlinear Anal.: Theory, Meth. & Appl., 41 (2000), 803-823.doi: 10.1016/S0362-546X(98)00311-3. |
[13] |
C. Mouhot and L. Neumann, Quantitative perturbative study of convergence to equilibrium for collisional kinetic models in the torus, Nonlinearity, 19 (2006), 969-998.doi: 10.1088/0951-7715/19/4/011. |
[14] |
J. Polewczak, The kinetic theory of simple reacting spheres: I. Global existence result in a dilute-gas case, J. Stat. Phys., 100 (2000), 327-362.doi: 10.1023/A:1018608216136. |
[15] |
F. Poupaud and C. Schmeiser, Charge transport in semiconductors with degeneracy effects, Math. Meth. in the Appl. Sci., 14 (1991), 301-318.doi: 10.1002/mma.1670140503. |
[16] |
C. Villani, Hypocoercivity, Memoirs of the AMS 950, 2009.doi: 10.1090/S0065-9266-09-00567-5. |