September  2016, 9(3): 587-603. doi: 10.3934/krm.2016008

Asymptotic stability of a boundary layer to the Euler--Poisson equations for a multicomponent plasma

1. 

Department of Computer Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, 466-8555, Japan

Received  April 2015 Revised  February 2016 Published  May 2016

The main concern of this paper is to analyze a boundary layer called a sheath that occurs on the surface of materials when in contact with a multicomponent plasma. For the formation of a sheath, the generalized Bohm criterion demands that ions enter the sheath region with a high velocity. The motion of a multicomponent plasma is governed by the Euler--Poisson equations, and a sheath is understood as a monotone stationary solution to those equations. In this paper, we prove the unique existence of the monotone stationary solution by assuming the generalized Bohm criterion. Moreover, it is shown that the stationary solution is time asymptotically stable provided that an initial perturbation is sufficiently small in weighted Sobolev space. We also obtain the convergence rate, which is subject to the decay rate of the initial perturbation, of the time global solution toward the stationary solution.
Citation: Masahiro Suzuki. Asymptotic stability of a boundary layer to the Euler--Poisson equations for a multicomponent plasma. Kinetic & Related Models, 2016, 9 (3) : 587-603. doi: 10.3934/krm.2016008
References:
[1]

A. Ambroso, Stability for solutions of a stationary Euler-Poisson problem,, Math. Models Methods Appl. Sci., 16 (2006), 1817.  doi: 10.1142/S0218202506001728.  Google Scholar

[2]

A. Ambroso, F. Méhats and P.-A. Raviart, On singular perturbation problems for the nonlinear Poisson equation,, Asympt. Anal., 25 (2001), 39.   Google Scholar

[3]

D. Bohm, Minimum ionic kinetic energy for a stable sheath,, in The characteristics of electrical discharges in magnetic fields (eds. A. Guthrie and R.K.Wakerling), (1949), 77.   Google Scholar

[4]

F. F. Chen, Introduction to Plasma Physics and Controlled Fusion,, $2^{nd}$ edition, (1984).   Google Scholar

[5]

S.-H. Ha and M. Slemrod, Global existence of plasma ion-sheaths and their dynamics,, Comm. Math. Phys., 238 (2003), 149.  doi: 10.1007/s00220-003-0871-z.  Google Scholar

[6]

S. Kawashima and A. Matsumura, Asymptotic stability of traveling wave solutions of systems for one-dimensional gas motion,, Comm. Math. Phys., 101 (1985), 97.  doi: 10.1007/BF01212358.  Google Scholar

[7]

I. Langmuir, The interaction of electron and positive ion space charges in cathode sheaths,, Phys. Rev., 33 (1929), 954.  doi: 10.1103/PhysRev.33.954.  Google Scholar

[8]

M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing,, $2^{nd}$ edition, (2005).  doi: 10.1002/0471724254.  Google Scholar

[9]

S. Nishibata, M. Ohnawa and M. Suzuki, Asymptotic stability of boundary layers to the Euler-Poisson equations arising in plasma physics,, SIAM J. Math. Anal., 44 (2012), 761.  doi: 10.1137/110835657.  Google Scholar

[10]

M. Nishikawa, Convergence rate to the traveling wave for viscous conservation laws,, Funkcial. Ekvac., 41 (1998), 107.   Google Scholar

[11]

K.-U. Riemann, The Bohm criterion and sheath formation. Initial value problems,, J. Phys. D: Appl. Phys., 24 (1991), 493.   Google Scholar

[12]

K.-U. Riemann, The Bohm criterion and boundary conditions for a multicomponent system,, IEEE Trans. Plasma Sci., 23 (1995), 709.  doi: 10.1109/27.467993.  Google Scholar

[13]

M. Suzuki, Asymptotic stability of stationary solutions to the Euler-Poisson equations arising in plasma physics,, Kinet. Relat. Models, 4 (2011), 569.  doi: 10.3934/krm.2011.4.569.  Google Scholar

show all references

References:
[1]

A. Ambroso, Stability for solutions of a stationary Euler-Poisson problem,, Math. Models Methods Appl. Sci., 16 (2006), 1817.  doi: 10.1142/S0218202506001728.  Google Scholar

[2]

A. Ambroso, F. Méhats and P.-A. Raviart, On singular perturbation problems for the nonlinear Poisson equation,, Asympt. Anal., 25 (2001), 39.   Google Scholar

[3]

D. Bohm, Minimum ionic kinetic energy for a stable sheath,, in The characteristics of electrical discharges in magnetic fields (eds. A. Guthrie and R.K.Wakerling), (1949), 77.   Google Scholar

[4]

F. F. Chen, Introduction to Plasma Physics and Controlled Fusion,, $2^{nd}$ edition, (1984).   Google Scholar

[5]

S.-H. Ha and M. Slemrod, Global existence of plasma ion-sheaths and their dynamics,, Comm. Math. Phys., 238 (2003), 149.  doi: 10.1007/s00220-003-0871-z.  Google Scholar

[6]

S. Kawashima and A. Matsumura, Asymptotic stability of traveling wave solutions of systems for one-dimensional gas motion,, Comm. Math. Phys., 101 (1985), 97.  doi: 10.1007/BF01212358.  Google Scholar

[7]

I. Langmuir, The interaction of electron and positive ion space charges in cathode sheaths,, Phys. Rev., 33 (1929), 954.  doi: 10.1103/PhysRev.33.954.  Google Scholar

[8]

M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing,, $2^{nd}$ edition, (2005).  doi: 10.1002/0471724254.  Google Scholar

[9]

S. Nishibata, M. Ohnawa and M. Suzuki, Asymptotic stability of boundary layers to the Euler-Poisson equations arising in plasma physics,, SIAM J. Math. Anal., 44 (2012), 761.  doi: 10.1137/110835657.  Google Scholar

[10]

M. Nishikawa, Convergence rate to the traveling wave for viscous conservation laws,, Funkcial. Ekvac., 41 (1998), 107.   Google Scholar

[11]

K.-U. Riemann, The Bohm criterion and sheath formation. Initial value problems,, J. Phys. D: Appl. Phys., 24 (1991), 493.   Google Scholar

[12]

K.-U. Riemann, The Bohm criterion and boundary conditions for a multicomponent system,, IEEE Trans. Plasma Sci., 23 (1995), 709.  doi: 10.1109/27.467993.  Google Scholar

[13]

M. Suzuki, Asymptotic stability of stationary solutions to the Euler-Poisson equations arising in plasma physics,, Kinet. Relat. Models, 4 (2011), 569.  doi: 10.3934/krm.2011.4.569.  Google Scholar

[1]

Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299

[2]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[3]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[4]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[5]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[6]

Thomas Frenzel, Matthias Liero. Effective diffusion in thin structures via generalized gradient systems and EDP-convergence. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 395-425. doi: 10.3934/dcdss.2020345

[7]

Dorothee Knees, Chiara Zanini. Existence of parameterized BV-solutions for rate-independent systems with discontinuous loads. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 121-149. doi: 10.3934/dcdss.2020332

[8]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[9]

Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291

[10]

Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304

[11]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[12]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[13]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[14]

Riccarda Rossi, Ulisse Stefanelli, Marita Thomas. Rate-independent evolution of sets. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 89-119. doi: 10.3934/dcdss.2020304

[15]

Luca Battaglia, Francesca Gladiali, Massimo Grossi. Asymptotic behavior of minimal solutions of $ -\Delta u = \lambda f(u) $ as $ \lambda\to-\infty $. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 681-700. doi: 10.3934/dcds.2020293

[16]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[17]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[18]

Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020465

[19]

Sören Bartels, Jakob Keck. Adaptive time stepping in elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 71-88. doi: 10.3934/dcdss.2020323

[20]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (55)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]