- Previous Article
- KRM Home
- This Issue
-
Next Article
Asymptotic stability of a boundary layer to the Euler--Poisson equations for a multicomponent plasma
Entropy production for ellipsoidal BGK model of the Boltzmann equation
1. | Department of mathematics, Sungkyunkwan University, Suwon 440-746, South Korea |
References:
[1] |
P. Andries, J.-F. Bourgat, P. Le Tallec and B. Perthame, Numerical comparison between the Boltzmann and ES-BGK models for rarefied gases, Comput. Methods Appl. Mech. Engrg., 191 (2002), 3369-3390.
doi: 10.1016/S0045-7825(02)00253-0. |
[2] |
P. Andries, P. Le Tallec, J.-P.Perlat and B. Perthame, The Gaussian-BGK model of Boltzmann equation with small Prandtl number, Eur. J. Mech. B Fluids, 19 (2000), 813-830.
doi: 10.1016/S0997-7546(00)01103-1. |
[3] |
K. Aoki, K. Kanba and S. Takata, Numerical analysis of a supersonic rarefied gas flow past a flat plate, Phys. Fluids, 9 (1997), p1144.
doi: 10.1063/1.869204. |
[4] |
F. Berthelin and A. Vasseur, From kinetic equations to multidimensional isentropic gas dynamics before shocks, SIAM J. Math. Anal., 36 (2005), 1807-1835.
doi: 10.1137/S0036141003431554. |
[5] |
A. Bellouquid, Global existence and large-time behavior for BGK model for a gas with non-constant cross section, Transport Theory Statist. Phys., 32 (2003), 157-184.
doi: 10.1081/TT-120019041. |
[6] |
P. L. Bhatnagar, E. P. Gross and M. Krook, A model for collision processes in gases. Small amplitude process in charged and neutral one-component systems, Phys. Rev., 94 (1954), 511-525.
doi: 10.1103/PhysRev.94.511. |
[7] |
G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Oxford Engineering Science, The Clarendon Press, Oxford University Press, New York, 1995. |
[8] |
M. Bisi, J. A. Cañizo and B. Lods, Entropy dissipation estimates for the linear Boltzmann operator, J. Funct. Anal., 269 (2015), 1028-1069.
doi: 10.1016/j.jfa.2015.05.002. |
[9] |
A. V. Bobylev and C. Cercignani, On the rate of entropy production for the Boltzmann equation, J. Statist. Phys., 94 (1999), 603-618.
doi: 10.1023/A:1004537522686. |
[10] |
R. Bosi and M. J. Cáceres, The BGK model with external confining potential: Existence, long-time behaviour and time-periodic Maxwellian equilibria, J. Stat. Phys., 136 (2009), 297-330.
doi: 10.1007/s10955-009-9782-5. |
[11] |
S. Brull, An ellipsoidal statistical model for gas mixtures, Comm. Math Sci., 13 (2015), 1-13.
doi: 10.4310/CMS.2015.v13.n1.a1. |
[12] |
S. Brull and J. Schneider, A new approach of the ellipsoidal statistical model, Cont. Mech. Thermodyn., 20 (2008), 63-74.
doi: 10.1007/s00161-008-0068-y. |
[13] |
C. Cercignani, The Boltzmann Equation and Its Application, Springer-Verlag, 1988.
doi: 10.1007/978-1-4612-1039-9. |
[14] |
C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory of Dilute Gases, Springer-Verlag, 1994.
doi: 10.1007/978-1-4419-8524-8. |
[15] |
C. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases, Cambridge University Press, Cambridge, 1990.
doi: 10.1119/1.1942035. |
[16] |
W. M. Chan, An Energy Method for the BGK Model, M. Phil thesis, City University of Hong Kong, 2007. |
[17] |
J. Dolbeault, P. Markowich, D. Oelz and C. Schmeiser, Non linear diffusions as limit of kinetic equations with relaxation collision kernels, Arch. Ration. Mech, Anal., 186 (2007), 133-158.
doi: 10.1007/s00205-007-0049-5. |
[18] |
R. DiPerna and P.-L. Lions, On the Cauchy problem for the Boltzmann equation: Global existence and weak stability. Ann. Math., 130 (1989), 321-366.
doi: 10.2307/1971423. |
[19] |
F. Filbet and S. Jin, An asymptotic preserving scheme for the ES-BGK model of the Boltzmann equation, J. Sci. Comput., 46 (2011), 204-224.
doi: 10.1007/s10915-010-9394-x. |
[20] |
F. Filbet and G. Russo, Semilagrangian schemes applied to moving boundary problems for the BGK model of rarefied gas dynamics, Kinet. Relat. Models, 2 (2009), 231-250.
doi: 10.3934/krm.2009.2.231. |
[21] |
M. A. Galli and R. Torczynski, Investigation of the ellipsoidal-statistical Bhatnagar-Gross-Krook kinetic model applied to gas-phase transport of heat and tangential momentum between parallel walls, Phys. Fluids, 23 (2011), 030601.
doi: 10.1063/1.3558869. |
[22] |
R. Glassey, The Cauchy Problems in Kinetic Theory, SIAM, 1996.
doi: 10.1137/1.9781611971477. |
[23] |
L. H. Holway, Kinetic theory of shock structure using and ellipsoidal distribution function. Rarefied Gas Dynamics, Vol. I (Proc. Fourth Internat. Sympos., Univ. Toronto, 1964), Academic Press, New York, (1966), 193-215. |
[24] |
D. Issautier, Convergence of a weighted particle method for solving the Boltzmann (B.G,K.) equaiton, SIAM Journal on Numerical Analysis, 33, (1996), 2099-2119.
doi: 10.1137/S0036142994266856. |
[25] |
S. K. Loyalka, N. Petrellis and T. S. Storvick, Some exact numerical results for the BGK model: Couette, Poiseuille and thermal creep flow between parallel plates, Z. Angew. Math. Phys., 30 (1979), 514-521.
doi: 10.1007/BF01588895. |
[26] |
A. Mellet, S. Mischler and C. Mouhot, Fractional diffusion limit for collisional kinetic equations, Arch. Ration. Mech. Anal., 199 (2011), 493-525.
doi: 10.1007/s00205-010-0354-2. |
[27] |
S. Mischler, Uniqueness for the BGK-equation in $R^n$ and the rate of convergence for a semi-discrete scheme, Differential integral Equations, 9 (1996), 1119-1138. |
[28] |
L. Mieussens, Discrete velocity model and implicit scheme for the BGK equation of rarefied gas dynamics. Math. Models Methods Appl. Sci., 10 (2000), 1121-1149.
doi: 10.1142/S0218202500000562. |
[29] |
L. Mieussens and H. Struchtrup, Numerical comparison of Bhatnagar-Gross-Krook models with proper Prandtl number, Phys. Fluids, 16 (2004), p2797.
doi: 10.1063/1.1758217. |
[30] |
S. Park and S.-B. Yun, Cauchy problem for the ellipsoidal-BGK model of the Boltzmann equation,, submitted., ().
|
[31] |
B. Perthame, Global existence to the BGK model of Boltzmann equation, J. Differential Equations, 82 (1989), 191-205.
doi: 10.1016/0022-0396(89)90173-3. |
[32] |
B. Perthame and M. Pulvirenti, Weighted $L^{\infty}$ bounds and uniqueness for the Boltzmann BGK model, Arch. Rational Mech. Anal., 125 (1993), 289-295.
doi: 10.1007/BF00383223. |
[33] |
S. Pieraccini and G. Puppo, Implicit-explicit schemes for BGK kinetic equations, J. Sci. Comput., 32 (2007), 1-28.
doi: 10.1007/s10915-006-9116-6. |
[34] |
G. Russo, P. Santagati and S.-B. Yun, Convergence of a semi-Lagrangian scheme for the BGK model of the Boltzmann equation, SIAM J. Numer. Anal., 50 (2012), 1111-1135.
doi: 10.1137/100800348. |
[35] |
L. Saint-Raymond, From the BGK model to the Navier-Stokes equations, Ann. Sci. Ecole Norm. Sup., 36 (2003), 271-317.
doi: 10.1016/S0012-9593(03)00010-7. |
[36] |
L. Saint-Raymond, Discrete time Navier-Stokes limit for the BGK Boltzmann equation, Comm. Partial Differential Equations, 27 (2002), 149-184.
doi: 10.1081/PDE-120002785. |
[37] |
Y. Sone, Kinetic Theory and Fluid Mechanics, Boston: Birkhäuser, 2002.
doi: 10.1007/978-1-4612-0061-1. |
[38] |
Y. Sone, Molecular Gas Dynamics: Theory, Techniques, and Applications, Boston: Brikhäuser, 2006.
doi: 10.1007/978-0-8176-4573-1. |
[39] |
H. Struchtrup, Macroscopic Transport Equations for Rarefied Gas Flows: Approximation Methods in Kinetic Theory, Springer. 2005.
doi: 10.1007/3-540-32386-4. |
[40] |
G. Toscani and C. Villani, Sharp entropy dissipation bounds and explicit rate of trend to equilibrium for the spatially homogeneous Boltzmann equation, Comm. Math. Phys., 203 (1999), 667-706.
doi: 10.1007/s002200050631. |
[41] |
S. Ukai, Stationary solutions of the BGK model equation on a finite interval with large boundary data, Transport theory Statist. Phys., 21 (1992), 487-500.
doi: 10.1080/00411459208203795. |
[42] |
S. Ukai and T. Yang, Mathematical Theory of Boltzmann equation, Lecture Notes Series. no. 8, Liu Bie Ju Center for Math. Sci, City University of Hong Kong, 2006. |
[43] |
C. Villani, A Review of mathematical topics in collisional kinetic theory, Handbook of mathematical fluid dynamics, Vol. I. North-Holland. Amsterdam, 2002, 71-305.
doi: 10.1016/S1874-5792(02)80004-0. |
[44] |
C. Villani, Cercignani's conjecture is sometimes true and always almost true, Comm. Math. Phys., 234 (2003), 455-490.
doi: 10.1007/s00220-002-0777-1. |
[45] |
P. Welander, On the temperature jump in a rarefied gas, Ark. Fys., 7 (1954), 507-553. |
[46] |
J. Wei and X. Zhang, The Cauchy problem for the BGK equation with an external force, J. Math. Anal. Appl., 391 (2012), 10-25.
doi: 10.1016/j.jmaa.2012.02.039. |
[47] |
B. Wennberg, Entropy dissipation and moment production for the Boltzmann equation, J. Statist. Phys., 86 (1997), 1053-1066.
doi: 10.1007/BF02183613. |
[48] |
S.-B. Yun, Cauchy problem for the Boltzmann-BGK model near a global Maxwellian, J. Math. Phy., 51 (2010), 123514, 24pp.
doi: 10.1063/1.3516479. |
[49] |
S.-B. Yun, Classical solutions for the ellipsoidal BGK model with fixed collision frequency, J. Differential Equations, 259 (2015), 6009-6037.
doi: 10.1016/j.jde.2015.07.016. |
[50] |
S.-B. Yun, Ellipsoidal BGK model near a global Maxwellian, SIAM J. Math. Anal., 47 (2015), 2324-2354.
doi: 10.1137/130932399. |
[51] |
X. Zhang, On the Cauchy problem of the Vlasov-Poisson-BGK system: global existence of weak solutions. J. Stat. Phys., 141 (2010), 566-588.
doi: 10.1007/s10955-010-0064-z. |
[52] |
X. Zhang and S, Hu, $L^p$ solutions to the Cauchy problem of the BGK equation, J. Math. Phys., 48 (2007), 113304, 17pp.
doi: 10.1063/1.2816261. |
show all references
References:
[1] |
P. Andries, J.-F. Bourgat, P. Le Tallec and B. Perthame, Numerical comparison between the Boltzmann and ES-BGK models for rarefied gases, Comput. Methods Appl. Mech. Engrg., 191 (2002), 3369-3390.
doi: 10.1016/S0045-7825(02)00253-0. |
[2] |
P. Andries, P. Le Tallec, J.-P.Perlat and B. Perthame, The Gaussian-BGK model of Boltzmann equation with small Prandtl number, Eur. J. Mech. B Fluids, 19 (2000), 813-830.
doi: 10.1016/S0997-7546(00)01103-1. |
[3] |
K. Aoki, K. Kanba and S. Takata, Numerical analysis of a supersonic rarefied gas flow past a flat plate, Phys. Fluids, 9 (1997), p1144.
doi: 10.1063/1.869204. |
[4] |
F. Berthelin and A. Vasseur, From kinetic equations to multidimensional isentropic gas dynamics before shocks, SIAM J. Math. Anal., 36 (2005), 1807-1835.
doi: 10.1137/S0036141003431554. |
[5] |
A. Bellouquid, Global existence and large-time behavior for BGK model for a gas with non-constant cross section, Transport Theory Statist. Phys., 32 (2003), 157-184.
doi: 10.1081/TT-120019041. |
[6] |
P. L. Bhatnagar, E. P. Gross and M. Krook, A model for collision processes in gases. Small amplitude process in charged and neutral one-component systems, Phys. Rev., 94 (1954), 511-525.
doi: 10.1103/PhysRev.94.511. |
[7] |
G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Oxford Engineering Science, The Clarendon Press, Oxford University Press, New York, 1995. |
[8] |
M. Bisi, J. A. Cañizo and B. Lods, Entropy dissipation estimates for the linear Boltzmann operator, J. Funct. Anal., 269 (2015), 1028-1069.
doi: 10.1016/j.jfa.2015.05.002. |
[9] |
A. V. Bobylev and C. Cercignani, On the rate of entropy production for the Boltzmann equation, J. Statist. Phys., 94 (1999), 603-618.
doi: 10.1023/A:1004537522686. |
[10] |
R. Bosi and M. J. Cáceres, The BGK model with external confining potential: Existence, long-time behaviour and time-periodic Maxwellian equilibria, J. Stat. Phys., 136 (2009), 297-330.
doi: 10.1007/s10955-009-9782-5. |
[11] |
S. Brull, An ellipsoidal statistical model for gas mixtures, Comm. Math Sci., 13 (2015), 1-13.
doi: 10.4310/CMS.2015.v13.n1.a1. |
[12] |
S. Brull and J. Schneider, A new approach of the ellipsoidal statistical model, Cont. Mech. Thermodyn., 20 (2008), 63-74.
doi: 10.1007/s00161-008-0068-y. |
[13] |
C. Cercignani, The Boltzmann Equation and Its Application, Springer-Verlag, 1988.
doi: 10.1007/978-1-4612-1039-9. |
[14] |
C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory of Dilute Gases, Springer-Verlag, 1994.
doi: 10.1007/978-1-4419-8524-8. |
[15] |
C. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases, Cambridge University Press, Cambridge, 1990.
doi: 10.1119/1.1942035. |
[16] |
W. M. Chan, An Energy Method for the BGK Model, M. Phil thesis, City University of Hong Kong, 2007. |
[17] |
J. Dolbeault, P. Markowich, D. Oelz and C. Schmeiser, Non linear diffusions as limit of kinetic equations with relaxation collision kernels, Arch. Ration. Mech, Anal., 186 (2007), 133-158.
doi: 10.1007/s00205-007-0049-5. |
[18] |
R. DiPerna and P.-L. Lions, On the Cauchy problem for the Boltzmann equation: Global existence and weak stability. Ann. Math., 130 (1989), 321-366.
doi: 10.2307/1971423. |
[19] |
F. Filbet and S. Jin, An asymptotic preserving scheme for the ES-BGK model of the Boltzmann equation, J. Sci. Comput., 46 (2011), 204-224.
doi: 10.1007/s10915-010-9394-x. |
[20] |
F. Filbet and G. Russo, Semilagrangian schemes applied to moving boundary problems for the BGK model of rarefied gas dynamics, Kinet. Relat. Models, 2 (2009), 231-250.
doi: 10.3934/krm.2009.2.231. |
[21] |
M. A. Galli and R. Torczynski, Investigation of the ellipsoidal-statistical Bhatnagar-Gross-Krook kinetic model applied to gas-phase transport of heat and tangential momentum between parallel walls, Phys. Fluids, 23 (2011), 030601.
doi: 10.1063/1.3558869. |
[22] |
R. Glassey, The Cauchy Problems in Kinetic Theory, SIAM, 1996.
doi: 10.1137/1.9781611971477. |
[23] |
L. H. Holway, Kinetic theory of shock structure using and ellipsoidal distribution function. Rarefied Gas Dynamics, Vol. I (Proc. Fourth Internat. Sympos., Univ. Toronto, 1964), Academic Press, New York, (1966), 193-215. |
[24] |
D. Issautier, Convergence of a weighted particle method for solving the Boltzmann (B.G,K.) equaiton, SIAM Journal on Numerical Analysis, 33, (1996), 2099-2119.
doi: 10.1137/S0036142994266856. |
[25] |
S. K. Loyalka, N. Petrellis and T. S. Storvick, Some exact numerical results for the BGK model: Couette, Poiseuille and thermal creep flow between parallel plates, Z. Angew. Math. Phys., 30 (1979), 514-521.
doi: 10.1007/BF01588895. |
[26] |
A. Mellet, S. Mischler and C. Mouhot, Fractional diffusion limit for collisional kinetic equations, Arch. Ration. Mech. Anal., 199 (2011), 493-525.
doi: 10.1007/s00205-010-0354-2. |
[27] |
S. Mischler, Uniqueness for the BGK-equation in $R^n$ and the rate of convergence for a semi-discrete scheme, Differential integral Equations, 9 (1996), 1119-1138. |
[28] |
L. Mieussens, Discrete velocity model and implicit scheme for the BGK equation of rarefied gas dynamics. Math. Models Methods Appl. Sci., 10 (2000), 1121-1149.
doi: 10.1142/S0218202500000562. |
[29] |
L. Mieussens and H. Struchtrup, Numerical comparison of Bhatnagar-Gross-Krook models with proper Prandtl number, Phys. Fluids, 16 (2004), p2797.
doi: 10.1063/1.1758217. |
[30] |
S. Park and S.-B. Yun, Cauchy problem for the ellipsoidal-BGK model of the Boltzmann equation,, submitted., ().
|
[31] |
B. Perthame, Global existence to the BGK model of Boltzmann equation, J. Differential Equations, 82 (1989), 191-205.
doi: 10.1016/0022-0396(89)90173-3. |
[32] |
B. Perthame and M. Pulvirenti, Weighted $L^{\infty}$ bounds and uniqueness for the Boltzmann BGK model, Arch. Rational Mech. Anal., 125 (1993), 289-295.
doi: 10.1007/BF00383223. |
[33] |
S. Pieraccini and G. Puppo, Implicit-explicit schemes for BGK kinetic equations, J. Sci. Comput., 32 (2007), 1-28.
doi: 10.1007/s10915-006-9116-6. |
[34] |
G. Russo, P. Santagati and S.-B. Yun, Convergence of a semi-Lagrangian scheme for the BGK model of the Boltzmann equation, SIAM J. Numer. Anal., 50 (2012), 1111-1135.
doi: 10.1137/100800348. |
[35] |
L. Saint-Raymond, From the BGK model to the Navier-Stokes equations, Ann. Sci. Ecole Norm. Sup., 36 (2003), 271-317.
doi: 10.1016/S0012-9593(03)00010-7. |
[36] |
L. Saint-Raymond, Discrete time Navier-Stokes limit for the BGK Boltzmann equation, Comm. Partial Differential Equations, 27 (2002), 149-184.
doi: 10.1081/PDE-120002785. |
[37] |
Y. Sone, Kinetic Theory and Fluid Mechanics, Boston: Birkhäuser, 2002.
doi: 10.1007/978-1-4612-0061-1. |
[38] |
Y. Sone, Molecular Gas Dynamics: Theory, Techniques, and Applications, Boston: Brikhäuser, 2006.
doi: 10.1007/978-0-8176-4573-1. |
[39] |
H. Struchtrup, Macroscopic Transport Equations for Rarefied Gas Flows: Approximation Methods in Kinetic Theory, Springer. 2005.
doi: 10.1007/3-540-32386-4. |
[40] |
G. Toscani and C. Villani, Sharp entropy dissipation bounds and explicit rate of trend to equilibrium for the spatially homogeneous Boltzmann equation, Comm. Math. Phys., 203 (1999), 667-706.
doi: 10.1007/s002200050631. |
[41] |
S. Ukai, Stationary solutions of the BGK model equation on a finite interval with large boundary data, Transport theory Statist. Phys., 21 (1992), 487-500.
doi: 10.1080/00411459208203795. |
[42] |
S. Ukai and T. Yang, Mathematical Theory of Boltzmann equation, Lecture Notes Series. no. 8, Liu Bie Ju Center for Math. Sci, City University of Hong Kong, 2006. |
[43] |
C. Villani, A Review of mathematical topics in collisional kinetic theory, Handbook of mathematical fluid dynamics, Vol. I. North-Holland. Amsterdam, 2002, 71-305.
doi: 10.1016/S1874-5792(02)80004-0. |
[44] |
C. Villani, Cercignani's conjecture is sometimes true and always almost true, Comm. Math. Phys., 234 (2003), 455-490.
doi: 10.1007/s00220-002-0777-1. |
[45] |
P. Welander, On the temperature jump in a rarefied gas, Ark. Fys., 7 (1954), 507-553. |
[46] |
J. Wei and X. Zhang, The Cauchy problem for the BGK equation with an external force, J. Math. Anal. Appl., 391 (2012), 10-25.
doi: 10.1016/j.jmaa.2012.02.039. |
[47] |
B. Wennberg, Entropy dissipation and moment production for the Boltzmann equation, J. Statist. Phys., 86 (1997), 1053-1066.
doi: 10.1007/BF02183613. |
[48] |
S.-B. Yun, Cauchy problem for the Boltzmann-BGK model near a global Maxwellian, J. Math. Phy., 51 (2010), 123514, 24pp.
doi: 10.1063/1.3516479. |
[49] |
S.-B. Yun, Classical solutions for the ellipsoidal BGK model with fixed collision frequency, J. Differential Equations, 259 (2015), 6009-6037.
doi: 10.1016/j.jde.2015.07.016. |
[50] |
S.-B. Yun, Ellipsoidal BGK model near a global Maxwellian, SIAM J. Math. Anal., 47 (2015), 2324-2354.
doi: 10.1137/130932399. |
[51] |
X. Zhang, On the Cauchy problem of the Vlasov-Poisson-BGK system: global existence of weak solutions. J. Stat. Phys., 141 (2010), 566-588.
doi: 10.1007/s10955-010-0064-z. |
[52] |
X. Zhang and S, Hu, $L^p$ solutions to the Cauchy problem of the BGK equation, J. Math. Phys., 48 (2007), 113304, 17pp.
doi: 10.1063/1.2816261. |
[1] |
Marzia Bisi, Giampiero Spiga. On a kinetic BGK model for slow chemical reactions. Kinetic and Related Models, 2011, 4 (1) : 153-167. doi: 10.3934/krm.2011.4.153 |
[2] |
Young-Pil Choi, Seok-Bae Yun. A BGK kinetic model with local velocity alignment forces. Networks and Heterogeneous Media, 2020, 15 (3) : 389-404. doi: 10.3934/nhm.2020024 |
[3] |
Carlota M. Cuesta, Sabine Hittmeir, Christian Schmeiser. Weak shocks of a BGK kinetic model for isentropic gas dynamics. Kinetic and Related Models, 2010, 3 (2) : 255-279. doi: 10.3934/krm.2010.3.255 |
[4] |
Gi-Chan Bae, Christian Klingenberg, Marlies Pirner, Seok-Bae Yun. BGK model of the multi-species Uehling-Uhlenbeck equation. Kinetic and Related Models, 2021, 14 (1) : 25-44. doi: 10.3934/krm.2020047 |
[5] |
Alexander V. Bobylev, Marzia Bisi, Maria Groppi, Giampiero Spiga, Irina F. Potapenko. A general consistent BGK model for gas mixtures. Kinetic and Related Models, 2018, 11 (6) : 1377-1393. doi: 10.3934/krm.2018054 |
[6] |
Byung-Hoon Hwang, Ho Lee, Seok-Bae Yun. Relativistic BGK model for massless particles in the FLRW spacetime. Kinetic and Related Models, 2021, 14 (6) : 949-959. doi: 10.3934/krm.2021031 |
[7] |
Michael Herty, Gabriella Puppo, Sebastiano Roncoroni, Giuseppe Visconti. The BGK approximation of kinetic models for traffic. Kinetic and Related Models, 2020, 13 (2) : 279-307. doi: 10.3934/krm.2020010 |
[8] |
Byung-Hoon Hwang, Seok-Bae Yun. Stationary solutions to the boundary value problem for the relativistic BGK model in a slab. Kinetic and Related Models, 2019, 12 (4) : 749-764. doi: 10.3934/krm.2019029 |
[9] |
Anaïs Crestetto, Nicolas Crouseilles, Mohammed Lemou. Kinetic/fluid micro-macro numerical schemes for Vlasov-Poisson-BGK equation using particles. Kinetic and Related Models, 2012, 5 (4) : 787-816. doi: 10.3934/krm.2012.5.787 |
[10] |
Lei Jing, Jiawei Sun. Global existence and long time behavior of the Ellipsoidal-Statistical-Fokker-Planck model for diatomic gases. Kinetic and Related Models, 2020, 13 (2) : 373-400. doi: 10.3934/krm.2020013 |
[11] |
Marcel Braukhoff. Semiconductor Boltzmann-Dirac-Benney equation with a BGK-type collision operator: Existence of solutions vs. ill-posedness. Kinetic and Related Models, 2019, 12 (2) : 445-482. doi: 10.3934/krm.2019019 |
[12] |
Jacek Polewczak, Ana Jacinta Soares. On modified simple reacting spheres kinetic model for chemically reactive gases. Kinetic and Related Models, 2017, 10 (2) : 513-539. doi: 10.3934/krm.2017020 |
[13] |
Giovanni Russo, Francis Filbet. Semilagrangian schemes applied to moving boundary problems for the BGK model of rarefied gas dynamics. Kinetic and Related Models, 2009, 2 (1) : 231-250. doi: 10.3934/krm.2009.2.231 |
[14] |
Daewa Kim, Annalisa Quaini. A kinetic theory approach to model pedestrian dynamics in bounded domains with obstacles. Kinetic and Related Models, 2019, 12 (6) : 1273-1296. doi: 10.3934/krm.2019049 |
[15] |
Franz Achleitner, Anton Arnold, Eric A. Carlen. On multi-dimensional hypocoercive BGK models. Kinetic and Related Models, 2018, 11 (4) : 953-1009. doi: 10.3934/krm.2018038 |
[16] |
Sebastiano Boscarino, Seung Yeon Cho, Maria Groppi, Giovanni Russo. BGK models for inert mixtures: Comparison and applications. Kinetic and Related Models, 2021, 14 (5) : 895-928. doi: 10.3934/krm.2021029 |
[17] |
Shigeru Takata, Masanari Hattori, Takumu Miyauchi. On the entropic property of the Ellipsoidal Statistical model with the prandtl number below 2/3. Kinetic and Related Models, 2020, 13 (6) : 1163-1174. doi: 10.3934/krm.2020041 |
[18] |
Karsten Matthies, George Stone, Florian Theil. The derivation of the linear Boltzmann equation from a Rayleigh gas particle model. Kinetic and Related Models, 2018, 11 (1) : 137-177. doi: 10.3934/krm.2018008 |
[19] |
Armando Majorana. A numerical model of the Boltzmann equation related to the discontinuous Galerkin method. Kinetic and Related Models, 2011, 4 (1) : 139-151. doi: 10.3934/krm.2011.4.139 |
[20] |
Reiner Henseler, Michael Herrmann, Barbara Niethammer, Juan J. L. Velázquez. A kinetic model for grain growth. Kinetic and Related Models, 2008, 1 (4) : 591-617. doi: 10.3934/krm.2008.1.591 |
2020 Impact Factor: 1.432
Tools
Metrics
Other articles
by authors
[Back to Top]