December  2016, 9(4): 621-656. doi: 10.3934/krm.2016010

A minimization formulation of a bi-kinetic sheath

1. 

UPMC-Paris 06, CNRS UMR 7598, Laboratoire Jacques-Louis Lions, 4, pl. Jussieu F75252 Paris cedex 05, France, France, France

Received  October 2014 Revised  July 2015 Published  September 2016

The mathematical description of the interaction between a plasma and a solid surface is a major issue that still remains challenging. In this paper, we model this interaction as a stationary and bi-kinetic Vlasov-Poisson-Ampère boundary value problem with boundary conditions that are consistent with the physics. In particular, we show that the wall potential can be determined from the ampibolarity of the particle flows as the unique solution of a non linear equation. Based on variational techniques, our analysis establishes the well-posedness of the model, provided that the incoming ion distribution satisfies a moment condition that generalizes the historical Bohm criterion of plasma physics. Quantitative estimates are also given, together with numerical illustrations that validate the robustness of our approach.
Citation: Mehdi Badsi, Martin Campos Pinto, Bruno Després. A minimization formulation of a bi-kinetic sheath. Kinetic and Related Models, 2016, 9 (4) : 621-656. doi: 10.3934/krm.2016010
References:
[1]

J. Apell, The superposition operator in function spaces. A survey, Expositiones Mathematicae, 1988.

[2]

A. Ambroso, X. Fleury, B. Lucquin-Desreux and P. A. Raviart, Some remarks on a stationary Vlasov-Poisson system with source term arising in ion beam neutralization, Transport Theory Statist. Phys., 30 (2001), 587-616. doi: 10.1081/TT-100107418.

[3]

S. Baalrud and C. Hegna, Kinetic theory of the presheath and the Bohm criterion, Plasma Sources Science and Technology, 20 (2011).

[4]

H. Beresticky and T. Lachant-Robert, Some properties of monotone rearrangement with applications to elliptic equations in cylinders, Math. Nachr., 266 (2004), 3-19. doi: 10.1002/mana.200310139.

[5]

D. Bohm, The Characteristics of Electrical Discharges in Magnetic Fields, McGraw Hill, New York, 1949.

[6]

R. Chalise and R. Khanal, A Kinetic Trajectory Simulation for Magnetized Plasma Sheath, Institute of Physics Publishing, 2012.

[7]

F. Chen, Introduction to Plasma Physics, Plenum Press, 1974.

[8]

R. J. Diperna and P. L. Lions, Ordinary differential equations, transport theory and Sobolev spaces, Inventiones Mathematicae, 98 (1989), 511-547. doi: 10.1007/BF01393835.

[9]

L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, 19, American Mathematical Society, 2010. doi: 10.1090/gsm/019.

[10]

M. Feldman, S. Y. HA and M. Slemrod, A Geometric level-set formulation of a plasma sheath interface, Arch. Rat. Mech. Anal., 178 (2005), 81-123. doi: 10.1007/s00205-005-0368-3.

[11]

Y. Güçlü, The plasma sheath for 1D-1V Vlasov-Poisson solvers, Invited talk at the Numkin 2013 Conference, Garching, Germany, http://www.ipp.mpg.de/1525371/Gueclue.pdf.

[12]

Y. Guo, C.-H. Shu and T. Zie, The dynamics of a plane diode, SIAM J. Math. Anal., 35 (2004), 1617-1635 (electronic). doi: 10.1137/S0036141003421133.

[13]

O. Kavian, Introduction à la Théorie des Points Critiques et Applications Aux Problèmes Elliptiques, Springer-Verlage, 1993.

[14]

H. Kohno, J. R. Myra and D. A. D'Ippolito, Radio-frequency sheath-plasma interactions with magnetic field tangency points along the sheath surface, Physics of Plasmas, 20 (2013), 082514.

[15]

J. G. Laframboise, Theory of spherical and cylindrical Langmuir probes in a collision less, Maxwellian plasma at rest, Institute for Aerospace Studies, University of Toronto, Report No. 100, 1966.

[16]

P.-H. Maire, Établissement et Comparaison de Modèles Fluides Pour un Plasma Faiblement Ionisé Quasi-neutre. Détermination des Conditions aux Limites à la Paroi, Thèse de Doctorat (in French) de l'Université Paris 6, 1996.

[17]

G. Manfredi and S. Devaux, Magnetized Plasma-Wall Transition. Consequences for Wall Sputtering and Erosion, Institute of Physics Publishing, 2008.

[18]

R. E. Marshak, The variational method for asymptotic neutron densities, Physical Review, 71 (1947), 688-693.

[19]

F. W. J. Olver, D. W. Lozier, R. F. Boisvert and C. W. Clark, NIST Handbook of Mathematical Functions, National Institute of Standards and Technology, Cambridge University Press, 2010.

[20]

P.-A. Raviart and C. Greengard, A Boundary-Value problem for the stationary Vlasov-Poisson equations: The Plane Diode, Comm. Pure Appl. Math., 43 (1990), 473-507. doi: 10.1002/cpa.3160430404.

[21]

K.-U. Riemann, The Bohm criterion and sheath formation, J. Phys. D: Appl. Phys., 24 (1991), 493. doi: 10.1088/0022-3727/24/4/001.

[22]

T. E. Sheridan, Solution of the Plasma-Sheath Equation with a Cool Maxwellian Ion Source, AIP Publishing, 2001.

[23]

G. Stampachia and D. Kinderlehrer, An Introduction to Variational Inequalities and Their Applications, Academic Press, 1980.

[24]

P. Stangeby, The Plasma Boundary of Magnetic Fusion Devices, Institute of Physics Publishing, 2000.

[25]

F. Valsaque and G. Manfredi, Numerical study of plasma wall transition in an oblique magnetic field, Journal of Nuclear Materials, 290-293 (2001), 763-767. doi: 10.1016/S0022-3115(00)00454-2.

show all references

References:
[1]

J. Apell, The superposition operator in function spaces. A survey, Expositiones Mathematicae, 1988.

[2]

A. Ambroso, X. Fleury, B. Lucquin-Desreux and P. A. Raviart, Some remarks on a stationary Vlasov-Poisson system with source term arising in ion beam neutralization, Transport Theory Statist. Phys., 30 (2001), 587-616. doi: 10.1081/TT-100107418.

[3]

S. Baalrud and C. Hegna, Kinetic theory of the presheath and the Bohm criterion, Plasma Sources Science and Technology, 20 (2011).

[4]

H. Beresticky and T. Lachant-Robert, Some properties of monotone rearrangement with applications to elliptic equations in cylinders, Math. Nachr., 266 (2004), 3-19. doi: 10.1002/mana.200310139.

[5]

D. Bohm, The Characteristics of Electrical Discharges in Magnetic Fields, McGraw Hill, New York, 1949.

[6]

R. Chalise and R. Khanal, A Kinetic Trajectory Simulation for Magnetized Plasma Sheath, Institute of Physics Publishing, 2012.

[7]

F. Chen, Introduction to Plasma Physics, Plenum Press, 1974.

[8]

R. J. Diperna and P. L. Lions, Ordinary differential equations, transport theory and Sobolev spaces, Inventiones Mathematicae, 98 (1989), 511-547. doi: 10.1007/BF01393835.

[9]

L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, 19, American Mathematical Society, 2010. doi: 10.1090/gsm/019.

[10]

M. Feldman, S. Y. HA and M. Slemrod, A Geometric level-set formulation of a plasma sheath interface, Arch. Rat. Mech. Anal., 178 (2005), 81-123. doi: 10.1007/s00205-005-0368-3.

[11]

Y. Güçlü, The plasma sheath for 1D-1V Vlasov-Poisson solvers, Invited talk at the Numkin 2013 Conference, Garching, Germany, http://www.ipp.mpg.de/1525371/Gueclue.pdf.

[12]

Y. Guo, C.-H. Shu and T. Zie, The dynamics of a plane diode, SIAM J. Math. Anal., 35 (2004), 1617-1635 (electronic). doi: 10.1137/S0036141003421133.

[13]

O. Kavian, Introduction à la Théorie des Points Critiques et Applications Aux Problèmes Elliptiques, Springer-Verlage, 1993.

[14]

H. Kohno, J. R. Myra and D. A. D'Ippolito, Radio-frequency sheath-plasma interactions with magnetic field tangency points along the sheath surface, Physics of Plasmas, 20 (2013), 082514.

[15]

J. G. Laframboise, Theory of spherical and cylindrical Langmuir probes in a collision less, Maxwellian plasma at rest, Institute for Aerospace Studies, University of Toronto, Report No. 100, 1966.

[16]

P.-H. Maire, Établissement et Comparaison de Modèles Fluides Pour un Plasma Faiblement Ionisé Quasi-neutre. Détermination des Conditions aux Limites à la Paroi, Thèse de Doctorat (in French) de l'Université Paris 6, 1996.

[17]

G. Manfredi and S. Devaux, Magnetized Plasma-Wall Transition. Consequences for Wall Sputtering and Erosion, Institute of Physics Publishing, 2008.

[18]

R. E. Marshak, The variational method for asymptotic neutron densities, Physical Review, 71 (1947), 688-693.

[19]

F. W. J. Olver, D. W. Lozier, R. F. Boisvert and C. W. Clark, NIST Handbook of Mathematical Functions, National Institute of Standards and Technology, Cambridge University Press, 2010.

[20]

P.-A. Raviart and C. Greengard, A Boundary-Value problem for the stationary Vlasov-Poisson equations: The Plane Diode, Comm. Pure Appl. Math., 43 (1990), 473-507. doi: 10.1002/cpa.3160430404.

[21]

K.-U. Riemann, The Bohm criterion and sheath formation, J. Phys. D: Appl. Phys., 24 (1991), 493. doi: 10.1088/0022-3727/24/4/001.

[22]

T. E. Sheridan, Solution of the Plasma-Sheath Equation with a Cool Maxwellian Ion Source, AIP Publishing, 2001.

[23]

G. Stampachia and D. Kinderlehrer, An Introduction to Variational Inequalities and Their Applications, Academic Press, 1980.

[24]

P. Stangeby, The Plasma Boundary of Magnetic Fusion Devices, Institute of Physics Publishing, 2000.

[25]

F. Valsaque and G. Manfredi, Numerical study of plasma wall transition in an oblique magnetic field, Journal of Nuclear Materials, 290-293 (2001), 763-767. doi: 10.1016/S0022-3115(00)00454-2.

[1]

Jean Dolbeault. An introduction to kinetic equations: the Vlasov-Poisson system and the Boltzmann equation. Discrete and Continuous Dynamical Systems, 2002, 8 (2) : 361-380. doi: 10.3934/dcds.2002.8.361

[2]

Silvia Caprino, Guido Cavallaro, Carlo Marchioro. Time evolution of a Vlasov-Poisson plasma with magnetic confinement. Kinetic and Related Models, 2012, 5 (4) : 729-742. doi: 10.3934/krm.2012.5.729

[3]

Gang Li, Xianwen Zhang. A Vlasov-Poisson plasma of infinite mass with a point charge. Kinetic and Related Models, 2018, 11 (2) : 303-336. doi: 10.3934/krm.2018015

[4]

Yulia O. Belyaeva, Björn Gebhard, Alexander L. Skubachevskii. A general way to confined stationary Vlasov-Poisson plasma configurations. Kinetic and Related Models, 2021, 14 (2) : 257-282. doi: 10.3934/krm.2021004

[5]

Katherine Zhiyuan Zhang. Focusing solutions of the Vlasov-Poisson system. Kinetic and Related Models, 2019, 12 (6) : 1313-1327. doi: 10.3934/krm.2019051

[6]

Silvia Caprino, Guido Cavallaro, Carlo Marchioro. A Vlasov-Poisson plasma with unbounded mass and velocities confined in a cylinder by a magnetic mirror. Kinetic and Related Models, 2016, 9 (4) : 657-686. doi: 10.3934/krm.2016011

[7]

Blanca Ayuso, José A. Carrillo, Chi-Wang Shu. Discontinuous Galerkin methods for the one-dimensional Vlasov-Poisson system. Kinetic and Related Models, 2011, 4 (4) : 955-989. doi: 10.3934/krm.2011.4.955

[8]

Jack Schaeffer. Global existence for the Vlasov-Poisson system with steady spatial asymptotic behavior. Kinetic and Related Models, 2012, 5 (1) : 129-153. doi: 10.3934/krm.2012.5.129

[9]

Gianluca Crippa, Silvia Ligabue, Chiara Saffirio. Lagrangian solutions to the Vlasov-Poisson system with a point charge. Kinetic and Related Models, 2018, 11 (6) : 1277-1299. doi: 10.3934/krm.2018050

[10]

Zili Chen, Xiuting Li, Xianwen Zhang. The two dimensional Vlasov-Poisson system with steady spatial asymptotics. Kinetic and Related Models, 2017, 10 (4) : 977-1009. doi: 10.3934/krm.2017039

[11]

Meixia Xiao, Xianwen Zhang. On global solutions to the Vlasov-Poisson system with radiation damping. Kinetic and Related Models, 2018, 11 (5) : 1183-1209. doi: 10.3934/krm.2018046

[12]

Jack Schaeffer. On time decay for the spherically symmetric Vlasov-Poisson system. Kinetic and Related Models, 2022, 15 (4) : 721-727. doi: 10.3934/krm.2021021

[13]

Gerhard Rein, Christopher Straub. On the transport operators arising from linearizing the Vlasov-Poisson or Einstein-Vlasov system about isotropic steady states. Kinetic and Related Models, 2020, 13 (5) : 933-949. doi: 10.3934/krm.2020032

[14]

Hyung Ju Hwang, Jaewoo Jung, Juan J. L. Velázquez. On global existence of classical solutions for the Vlasov-Poisson system in convex bounded domains. Discrete and Continuous Dynamical Systems, 2013, 33 (2) : 723-737. doi: 10.3934/dcds.2013.33.723

[15]

Francis Filbet, Roland Duclous, Bruno Dubroca. Analysis of a high order finite volume scheme for the 1D Vlasov-Poisson system. Discrete and Continuous Dynamical Systems - S, 2012, 5 (2) : 283-305. doi: 10.3934/dcdss.2012.5.283

[16]

Trinh T. Nguyen. Derivative estimates for screened Vlasov-Poisson system around Penrose-stable equilibria. Kinetic and Related Models, 2020, 13 (6) : 1193-1218. doi: 10.3934/krm.2020043

[17]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic and Related Models, 2021, 14 (1) : 149-174. doi: 10.3934/krm.2020052

[18]

Anaïs Crestetto, Nicolas Crouseilles, Mohammed Lemou. Kinetic/fluid micro-macro numerical schemes for Vlasov-Poisson-BGK equation using particles. Kinetic and Related Models, 2012, 5 (4) : 787-816. doi: 10.3934/krm.2012.5.787

[19]

Xianglong Duan. Sharp decay estimates for the Vlasov-Poisson and Vlasov-Yukawa systems with small data. Kinetic and Related Models, 2022, 15 (1) : 119-146. doi: 10.3934/krm.2021049

[20]

Baptiste Fedele, Claudia Negulescu. Numerical study of an anisotropic Vlasov equation arising in plasma physics. Kinetic and Related Models, 2018, 11 (6) : 1395-1426. doi: 10.3934/krm.2018055

2020 Impact Factor: 1.432

Metrics

  • PDF downloads (148)
  • HTML views (0)
  • Cited by (1)

[Back to Top]