\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Well-posedness for the Keller-Segel equation with fractional Laplacian and the theory of propagation of chaos

Abstract Related Papers Cited by
  • This paper investigates the generalized Keller-Segel (KS) system with a nonlocal diffusion term $-\nu(-\Delta)^{\frac{\alpha}{2}}\rho~(1<\alpha<2)$. Firstly, the global existence of weak solutions is proved for the initial density $\rho_0\in L^1\cap L^{\frac{d}{\alpha}}(\mathbb{R}^d)~(d\geq2)$ with $\|\rho_0\|_{\frac {d}{\alpha}} < K$, where $K$ is a universal constant only depending on $d,\alpha,\nu$. Moreover, the conservation of mass holds true and the weak solution satisfies some hyper-contractive and decay estimates in $L^r$ for any $1< r<\infty$. Secondly, for the more general initial data $\rho_0\in L^1\cap L^2(\mathbb{R}^d)$$~(d=2,3)$, the local existence is obtained. Thirdly, for $\rho_0\in L^1\big(\mathbb{R}^d,(1+|x|)dx\big)\cap L^\infty(\mathbb{R}^d)(~d\geq2)$ with $\|\rho_0\|_{\frac{d}{\alpha}} < K$, we prove the uniqueness and stability of weak solutions under Wasserstein metric through the method of associating the KS equation with a self-consistent stochastic process driven by the rotationally invariant $\alpha$-stable Lévy process $L_{\alpha}(t)$. Also, we prove the weak solution is $L^\infty$ bounded uniformly in time. Lastly, we consider the $N$-particle interacting system with the Lévy process $L_{\alpha}(t)$ and the Newtonian potential aggregation and prove that the expectation of collision time between particles is below a universal constant if the moment $\int_{\mathbb{R}^d}|x|^\gamma\rho_0dx$ for some $1<\gamma<\alpha$ is below a universal constant $K_\gamma$ and $\nu$ is also below a universal constant. Meanwhile, we prove the propagation of chaos as $N\rightarrow\infty$ for the interacting particle system with a cut-off parameter $\varepsilon\sim(\ln N)^{-\frac{1}{d}}$, and show that the mean field limit equation is exactly the generalized KS equation.
    Mathematics Subject Classification: Primary: 65M75, 35K55; Secondary: 60J70.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    D. Applebaum, Lévy Processes and Stochastic Calculus, $2^{nd}$ edition, Cambridge University Press, Cambridge, 2009.doi: 10.1017/CBO9780511809781.

    [2]

    F. Bartumeus, F. Peters, S. Pueyo, C. Marraśe and J. Catalan, Helical Lévy walks: Adjusting searching statistics to resource availability in microzooplankton, Proceedings of the National Academy of Sciences, 100 (2003), 12771-12775.

    [3]

    J. Bertoin, Lévy Processes, Cambridge University Press, Cambridge, 1996.

    [4]

    S. Bian and J.-G. Liu, Dynamic and steady states for multi-dimensional Keller-Segel model with diffusion exponent $m>0$, Comm. Math. Phys., 323 (2013), 1017-1070.doi: 10.1007/s00220-013-1777-z.

    [5]

    S. Bian and J.-G. Liu, Ultra-contractivity for Keller-Segel model with diffusion exponent $m>1-2/d$, Kinet. Relat. Models, 7 (2014), 9-28.doi: 10.3934/krm.2014.7.9.

    [6]

    P. Biler, T. Cieślak, G. Karch and J. Zienkiewicz, Local criteria for blowup in two-dimensional chemotaxis models, preprint, arXiv:1410.7807.

    [7]

    P. Biler, T. Funaki and W. A. Woyczyński, Interacting particle approximation for nonlocal quadratic evolution problems, Probability and Mathematical Statistics-Wroclaw University, 19 (1999), 267-286.

    [8]

    P. Biler and G. Karch, Blowup of solutions to generalized Keller-Segel model, J. Evol. Equ., 10 (2010), 247-262.doi: 10.1007/s00028-009-0048-0.

    [9]

    P. Biler and W. A. Woyczyński, Nonlocal quadratic evolution problems, Banach Center Publications, 52 (2000), 11-24.

    [10]

    P. Biler and W. A. Woyczyński, Global and exploding solutions for nonlocal quadratic evolution problems, SIAM J. Appl. Math., 59 (1999), 845-869.doi: 10.1137/S0036139996313447.

    [11]

    F. Bolley, J. A. Cañizo and J. A. Carrillo, Mean-field limit for the stochastic Vicsek model, Appl. Math. Lett., 25 (2012), 339-343.doi: 10.1016/j.aml.2011.09.011.

    [12]

    M. Bonforte and J. L. Vázquez, Quantitative local and global a priori estimates for fractional nonlinear diffusion equations, Adv. in Math., 250 (2014), 242-284.doi: 10.1016/j.aim.2013.09.018.

    [13]

    L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.doi: 10.1080/03605300600987306.

    [14]

    L. Caffarelli and P. E. Souganidis, Convergence of nonlocal threshold dynamics approximations to front propagation, Arch. Ration. Mech. Anal., 195 (2010), 1-23.doi: 10.1007/s00205-008-0181-x.

    [15]

    L. Caffarelli and A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Ann. of Math., 171 (2010), 1903-1930.doi: 10.4007/annals.2010.171.1903.

    [16]

    J. A. Carrillo, S. Lisini and E. Mainini, Uniqueness for Keller-Segel-type chemotaxis models, Discrete Contin. Dyn. Syst., 34 (2014), 1319-1338.doi: 10.3934/dcds.2014.34.1319.

    [17]

    X. Chen, A. Jüngel and J.-G. Liu, A Note on Aubin-Lions-Dubinskiĭ Lemmas, Acta Appl. Math., 133 (2014), 33-43.doi: 10.1007/s10440-013-9858-8.

    [18]

    F. G. Egana and S. Mischler, Uniqueness and long time asymptotic for the Keller-Segel equation: The parabolic-elliptic case, Arch. Ration. Mech. Anal., 220 (2016), 1159-1194.doi: 10.1007/s00205-015-0951-1.

    [19]

    C. Escudero, Chemotactic collapse and mesenchymal morphogenesis, Phys. Rev. E, 72 (2005), 022903.doi: 10.1103/PhysRevE.72.022903.

    [20]

    C. Escudero, The fractional Keller-Segel model, Nonlinearity, 19 (2006), 2909-2918.doi: 10.1088/0951-7715/19/12/010.

    [21]

    V. Feller, An Introduction to Probability Theory and Its Applications: Volume 2, $2^{nd}$ edition, J. Wiley & sons, New York-London-Sydney, 1971.

    [22]

    N. Fournier, M. Hauray and S. Mischler, Propagation of chaos for the 2D viscous vortex model, J. Eur. Math. Soc. (JEMS), 16 (2014), 1423-1466.doi: 10.4171/JEMS/465.

    [23]

    M. Kac, Foundations of kinetic theory, Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 3 (1956), 171-197.

    [24]

    E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399-415.doi: 10.1016/0022-5193(70)90092-5.

    [25]

    J. Klafter, B. White and M. Levandowsky, Microzooplankton feeding behavior and the Lévy walk, Biological Motion, 89 (1990), 281-296.doi: 10.1007/978-3-642-51664-1_20.

    [26]

    M. Levandowsky, B. White and F. Schuster, Random movements of soil amebas, Acta Protozoologica, 36 (1997), 237-248.

    [27]

    D. Li and J. L. Rodrigo, Finite-time singularities of an aggregation equation in $\mathbbR^n$ with fractional dissipation, Comm. Math. Phys., 287 (2009), 687-703.doi: 10.1007/s00220-008-0669-0.

    [28]

    D. Li and J. L. Rodrigo, Refined blowup criteria and nonsymmetric blowup of an aggregation equation, Adv. in Math., 220 (2009), 1717-1738.doi: 10.1016/j.aim.2008.10.016.

    [29]

    D. Li, J. L. Rodrigo and X. Zhang, Exploding solutions for a nonlocal quadratic evolution problem, Rev. Mat. Iberoamericana, 26 (2010), 295-332.doi: 10.4171/RMI/602.

    [30]

    J.-G. Liu and J. Wang, A note on $L^\infty$ bound and uniqueness to a degenerate Keller-Segel model, Acta Appl. Math., 142 (2016), 173-188.doi: 10.1007/s10440-015-0022-5.

    [31]

    J.-G. Liu and R. Yang, Propagation of chaos for keller-segel equation with a logarithmic cut-off, preprint.

    [32]

    F. Matthäus, M. Jagodič and J. Dobnikar, E. coli superdiffusion and chemotaxis-search strategy, precision, and motility, Biophys. J., 97 (2009), 946-957.doi: 10.1016/j.bpj.2009.04.065.

    [33]

    P. E. Protter, Stochastic Integration and Differential Equations, $2^{nd}$ edition, Springer-Verlag, Berlin, 2004.doi: 10.1007/978-3-662-10061-5.

    [34]

    K. Sato, Lévy Processes and Infinitely Divisible Distributions, Cambridge University Press, Cambridge, 2013.

    [35]

    E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, 1970.

    [36]

    A. Stevens, The derivation of chemotaxis equations as limit dynamics of moderately interacting stochastic many-particle systems, SIAM J. Appl. Math., 61 (2000), 183-212.doi: 10.1137/S0036139998342065.

    [37]

    A.-S. Sznitman, A propagation of chaos result for Burgers' equation, Probab. Theory Relat. Fields, 71 (1986), 581-613.doi: 10.1007/BF00699042.

    [38]

    E. Valdinoci, From the long jump random walk to the fractional Laplacian, Boletín de la Sociedad Española de Matemática Aplicada, 49 (2009), 33-44.

    [39]

    J. L. Vázquez, Nonlinear diffusion with fractional Laplacian operators, Nonlinear Partial Differential Equations, 7 (2012), 271-298.doi: 10.1007/978-3-642-25361-4_15.

    [40]

    J. L. Vázquez, Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 857-885.doi: 10.3934/dcdss.2014.7.857.

    [41]

    C. Villani, Optimal Transport: Old and New, Springer-Verlag, Berlin, 2008.doi: 10.1007/978-3-540-71050-9.

    [42]

    V. Yudovich, Non-stationary flow of an ideal incompressible liquid, U.S.S.R. Comput. Math. and Math. Phys., 3 (1963), 1407-1456.doi: 10.1016/0041-5553(63)90247-7.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(203) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return