Citation: |
[1] |
D. Applebaum, Lévy Processes and Stochastic Calculus, $2^{nd}$ edition, Cambridge University Press, Cambridge, 2009.doi: 10.1017/CBO9780511809781. |
[2] |
F. Bartumeus, F. Peters, S. Pueyo, C. Marraśe and J. Catalan, Helical Lévy walks: Adjusting searching statistics to resource availability in microzooplankton, Proceedings of the National Academy of Sciences, 100 (2003), 12771-12775. |
[3] |
J. Bertoin, Lévy Processes, Cambridge University Press, Cambridge, 1996. |
[4] |
S. Bian and J.-G. Liu, Dynamic and steady states for multi-dimensional Keller-Segel model with diffusion exponent $m>0$, Comm. Math. Phys., 323 (2013), 1017-1070.doi: 10.1007/s00220-013-1777-z. |
[5] |
S. Bian and J.-G. Liu, Ultra-contractivity for Keller-Segel model with diffusion exponent $m>1-2/d$, Kinet. Relat. Models, 7 (2014), 9-28.doi: 10.3934/krm.2014.7.9. |
[6] |
P. Biler, T. Cieślak, G. Karch and J. Zienkiewicz, Local criteria for blowup in two-dimensional chemotaxis models, preprint, arXiv:1410.7807. |
[7] |
P. Biler, T. Funaki and W. A. Woyczyński, Interacting particle approximation for nonlocal quadratic evolution problems, Probability and Mathematical Statistics-Wroclaw University, 19 (1999), 267-286. |
[8] |
P. Biler and G. Karch, Blowup of solutions to generalized Keller-Segel model, J. Evol. Equ., 10 (2010), 247-262.doi: 10.1007/s00028-009-0048-0. |
[9] |
P. Biler and W. A. Woyczyński, Nonlocal quadratic evolution problems, Banach Center Publications, 52 (2000), 11-24. |
[10] |
P. Biler and W. A. Woyczyński, Global and exploding solutions for nonlocal quadratic evolution problems, SIAM J. Appl. Math., 59 (1999), 845-869.doi: 10.1137/S0036139996313447. |
[11] |
F. Bolley, J. A. Cañizo and J. A. Carrillo, Mean-field limit for the stochastic Vicsek model, Appl. Math. Lett., 25 (2012), 339-343.doi: 10.1016/j.aml.2011.09.011. |
[12] |
M. Bonforte and J. L. Vázquez, Quantitative local and global a priori estimates for fractional nonlinear diffusion equations, Adv. in Math., 250 (2014), 242-284.doi: 10.1016/j.aim.2013.09.018. |
[13] |
L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.doi: 10.1080/03605300600987306. |
[14] |
L. Caffarelli and P. E. Souganidis, Convergence of nonlocal threshold dynamics approximations to front propagation, Arch. Ration. Mech. Anal., 195 (2010), 1-23.doi: 10.1007/s00205-008-0181-x. |
[15] |
L. Caffarelli and A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Ann. of Math., 171 (2010), 1903-1930.doi: 10.4007/annals.2010.171.1903. |
[16] |
J. A. Carrillo, S. Lisini and E. Mainini, Uniqueness for Keller-Segel-type chemotaxis models, Discrete Contin. Dyn. Syst., 34 (2014), 1319-1338.doi: 10.3934/dcds.2014.34.1319. |
[17] |
X. Chen, A. Jüngel and J.-G. Liu, A Note on Aubin-Lions-Dubinskiĭ Lemmas, Acta Appl. Math., 133 (2014), 33-43.doi: 10.1007/s10440-013-9858-8. |
[18] |
F. G. Egana and S. Mischler, Uniqueness and long time asymptotic for the Keller-Segel equation: The parabolic-elliptic case, Arch. Ration. Mech. Anal., 220 (2016), 1159-1194.doi: 10.1007/s00205-015-0951-1. |
[19] |
C. Escudero, Chemotactic collapse and mesenchymal morphogenesis, Phys. Rev. E, 72 (2005), 022903.doi: 10.1103/PhysRevE.72.022903. |
[20] |
C. Escudero, The fractional Keller-Segel model, Nonlinearity, 19 (2006), 2909-2918.doi: 10.1088/0951-7715/19/12/010. |
[21] |
V. Feller, An Introduction to Probability Theory and Its Applications: Volume 2, $2^{nd}$ edition, J. Wiley & sons, New York-London-Sydney, 1971. |
[22] |
N. Fournier, M. Hauray and S. Mischler, Propagation of chaos for the 2D viscous vortex model, J. Eur. Math. Soc. (JEMS), 16 (2014), 1423-1466.doi: 10.4171/JEMS/465. |
[23] |
M. Kac, Foundations of kinetic theory, Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 3 (1956), 171-197. |
[24] |
E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399-415.doi: 10.1016/0022-5193(70)90092-5. |
[25] |
J. Klafter, B. White and M. Levandowsky, Microzooplankton feeding behavior and the Lévy walk, Biological Motion, 89 (1990), 281-296.doi: 10.1007/978-3-642-51664-1_20. |
[26] |
M. Levandowsky, B. White and F. Schuster, Random movements of soil amebas, Acta Protozoologica, 36 (1997), 237-248. |
[27] |
D. Li and J. L. Rodrigo, Finite-time singularities of an aggregation equation in $\mathbbR^n$ with fractional dissipation, Comm. Math. Phys., 287 (2009), 687-703.doi: 10.1007/s00220-008-0669-0. |
[28] |
D. Li and J. L. Rodrigo, Refined blowup criteria and nonsymmetric blowup of an aggregation equation, Adv. in Math., 220 (2009), 1717-1738.doi: 10.1016/j.aim.2008.10.016. |
[29] |
D. Li, J. L. Rodrigo and X. Zhang, Exploding solutions for a nonlocal quadratic evolution problem, Rev. Mat. Iberoamericana, 26 (2010), 295-332.doi: 10.4171/RMI/602. |
[30] |
J.-G. Liu and J. Wang, A note on $L^\infty$ bound and uniqueness to a degenerate Keller-Segel model, Acta Appl. Math., 142 (2016), 173-188.doi: 10.1007/s10440-015-0022-5. |
[31] |
J.-G. Liu and R. Yang, Propagation of chaos for keller-segel equation with a logarithmic cut-off, preprint. |
[32] |
F. Matthäus, M. Jagodič and J. Dobnikar, E. coli superdiffusion and chemotaxis-search strategy, precision, and motility, Biophys. J., 97 (2009), 946-957.doi: 10.1016/j.bpj.2009.04.065. |
[33] |
P. E. Protter, Stochastic Integration and Differential Equations, $2^{nd}$ edition, Springer-Verlag, Berlin, 2004.doi: 10.1007/978-3-662-10061-5. |
[34] |
K. Sato, Lévy Processes and Infinitely Divisible Distributions, Cambridge University Press, Cambridge, 2013. |
[35] |
E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, 1970. |
[36] |
A. Stevens, The derivation of chemotaxis equations as limit dynamics of moderately interacting stochastic many-particle systems, SIAM J. Appl. Math., 61 (2000), 183-212.doi: 10.1137/S0036139998342065. |
[37] |
A.-S. Sznitman, A propagation of chaos result for Burgers' equation, Probab. Theory Relat. Fields, 71 (1986), 581-613.doi: 10.1007/BF00699042. |
[38] |
E. Valdinoci, From the long jump random walk to the fractional Laplacian, Boletín de la Sociedad Española de Matemática Aplicada, 49 (2009), 33-44. |
[39] |
J. L. Vázquez, Nonlinear diffusion with fractional Laplacian operators, Nonlinear Partial Differential Equations, 7 (2012), 271-298.doi: 10.1007/978-3-642-25361-4_15. |
[40] |
J. L. Vázquez, Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 857-885.doi: 10.3934/dcdss.2014.7.857. |
[41] |
C. Villani, Optimal Transport: Old and New, Springer-Verlag, Berlin, 2008.doi: 10.1007/978-3-540-71050-9. |
[42] |
V. Yudovich, Non-stationary flow of an ideal incompressible liquid, U.S.S.R. Comput. Math. and Math. Phys., 3 (1963), 1407-1456.doi: 10.1016/0041-5553(63)90247-7. |