• Previous Article
    Global existence for the 2D Navier-Stokes flow in the exterior of a moving or rotating obstacle
  • KRM Home
  • This Issue
  • Next Article
    Well-posedness for the Keller-Segel equation with fractional Laplacian and the theory of propagation of chaos
December  2016, 9(4): 749-766. doi: 10.3934/krm.2016014

Chaotic distributions for relativistic particles

1. 

Department of Mathematical sciences, Chalmers University of Technology and the University of Gothenburg, 412 96 GÖTEBORG, Sweden, Sweden

Received  July 2015 Revised  April 2016 Published  September 2016

We study a modified Kac model where the classical kinetic energy is replaced by an arbitrary energy function $\phi(v)$, $v \in \mathbb{R}$. The aim of this paper is to show that the uniform density with respect to the microcanonical measure is $Ce^{-z_0\phi(v)}$-chaotic, $C,z_0 \in \mathbb{R}_+$. The kinetic energy for relativistic particles is a special case. A generalization to the case $v\in \mathbb{R}^d$ which involves conservation momentum is also formally discussed.
Citation: Dawan Mustafa, Bernt Wennberg. Chaotic distributions for relativistic particles. Kinetic & Related Models, 2016, 9 (4) : 749-766. doi: 10.3934/krm.2016014
References:
[1]

E. A. Carlen, M. C. Carvalho, J. Le Roux, M. Loss and C. Villani, Entropy and chaos in the Kac model,, Kinet. Relat. Models, 3 (2010), 85.  doi: 10.3934/krm.2010.3.85.  Google Scholar

[2]

E. A. Carlen, P. Degond and B. Wennbrg, Kinetic limits for pair-interaction driven master equations and biological swarm models,, Math. Models Methods Appl. Sci., 23 (2013), 1339.  doi: 10.1142/S0218202513500115.  Google Scholar

[3]

K. Carrapatoso, Quantitative and qualitative Kac's chaos on the Boltzmann's sphere,, Ann. Inst. Henri Poincaré Probab. Stat., 51 (2015), 993.  doi: 10.1214/14-AIHP612.  Google Scholar

[4]

C. Cercignani and G. Medeiros Kremer, The Relativistic Boltzmann Equation: Theory and Applications,, Birkhäuser Verlag, (2002).  doi: 10.1007/978-3-0348-8165-4.  Google Scholar

[5]

J. T. Chang D. Pollard, Conditioning as disintegration,, Statist. Neerlandica, 51 (1997), 287.  doi: 10.1111/1467-9574.00056.  Google Scholar

[6]

L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, Revised Edition,, CRC Press, (2015).   Google Scholar

[7]

I. Gallagher, L. Saint-Raymond and B. Texier, From Newton to Boltzmann: Hard Spheres and Short-Range Potentials,, Zurich Lectures in Advanced Mathematics, (2013).   Google Scholar

[8]

R. V. Gamkrelidze, Integral representations and asymptotic methods,, in Encyclopaedia of Mathematical Sciences, (1989).  doi: 10.1007/978-3-642-61310-4.  Google Scholar

[9]

M. Kac, Foundations of kinetic theory,, in Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 3 (1956), 171.   Google Scholar

[10]

O. E. Landford III, Time evolution of large classical systems,, Dynamical Systems, 38 (1975), 1.   Google Scholar

[11]

T. Lelièvre, M. Rousset and G. Stoltz, Free Energy Computations,, Imperial College Press, (2010).  doi: 10.1142/9781848162488.  Google Scholar

[12]

M. Pulvirenti, C. Saffirio and S. Simonella, On the validity of the Boltzmann equation for short range potentials,, Rev. Math. Phys., 26 (2014).  doi: 10.1142/S0129055X14500019.  Google Scholar

[13]

A.-S. Sznitman, Topics in propagation of chaos,, in École d'Été de Probabilités de Saint-Flour XIX-1989, 1464 (1991), 165.  doi: 10.1007/BFb0085169.  Google Scholar

[14]

R. M. Strain, Coordinates in the relativistic Boltzmann theory,, Kinet. Relat. Models, 4 (2011), 345.  doi: 10.3934/krm.2011.4.345.  Google Scholar

[15]

R. M. Strain and S.-B. Yun, Spatially homogeneous Boltzmann equation for relativistic particles,, SIAM J. Math. Anal., 46 (2014), 917.  doi: 10.1137/130923531.  Google Scholar

[16]

M. Toda, R. Kubo and N. Saitô, Statistical Physics I, Equilibrium Statistical Mechanics,, 2nd edition, (1992).   Google Scholar

show all references

References:
[1]

E. A. Carlen, M. C. Carvalho, J. Le Roux, M. Loss and C. Villani, Entropy and chaos in the Kac model,, Kinet. Relat. Models, 3 (2010), 85.  doi: 10.3934/krm.2010.3.85.  Google Scholar

[2]

E. A. Carlen, P. Degond and B. Wennbrg, Kinetic limits for pair-interaction driven master equations and biological swarm models,, Math. Models Methods Appl. Sci., 23 (2013), 1339.  doi: 10.1142/S0218202513500115.  Google Scholar

[3]

K. Carrapatoso, Quantitative and qualitative Kac's chaos on the Boltzmann's sphere,, Ann. Inst. Henri Poincaré Probab. Stat., 51 (2015), 993.  doi: 10.1214/14-AIHP612.  Google Scholar

[4]

C. Cercignani and G. Medeiros Kremer, The Relativistic Boltzmann Equation: Theory and Applications,, Birkhäuser Verlag, (2002).  doi: 10.1007/978-3-0348-8165-4.  Google Scholar

[5]

J. T. Chang D. Pollard, Conditioning as disintegration,, Statist. Neerlandica, 51 (1997), 287.  doi: 10.1111/1467-9574.00056.  Google Scholar

[6]

L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, Revised Edition,, CRC Press, (2015).   Google Scholar

[7]

I. Gallagher, L. Saint-Raymond and B. Texier, From Newton to Boltzmann: Hard Spheres and Short-Range Potentials,, Zurich Lectures in Advanced Mathematics, (2013).   Google Scholar

[8]

R. V. Gamkrelidze, Integral representations and asymptotic methods,, in Encyclopaedia of Mathematical Sciences, (1989).  doi: 10.1007/978-3-642-61310-4.  Google Scholar

[9]

M. Kac, Foundations of kinetic theory,, in Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 3 (1956), 171.   Google Scholar

[10]

O. E. Landford III, Time evolution of large classical systems,, Dynamical Systems, 38 (1975), 1.   Google Scholar

[11]

T. Lelièvre, M. Rousset and G. Stoltz, Free Energy Computations,, Imperial College Press, (2010).  doi: 10.1142/9781848162488.  Google Scholar

[12]

M. Pulvirenti, C. Saffirio and S. Simonella, On the validity of the Boltzmann equation for short range potentials,, Rev. Math. Phys., 26 (2014).  doi: 10.1142/S0129055X14500019.  Google Scholar

[13]

A.-S. Sznitman, Topics in propagation of chaos,, in École d'Été de Probabilités de Saint-Flour XIX-1989, 1464 (1991), 165.  doi: 10.1007/BFb0085169.  Google Scholar

[14]

R. M. Strain, Coordinates in the relativistic Boltzmann theory,, Kinet. Relat. Models, 4 (2011), 345.  doi: 10.3934/krm.2011.4.345.  Google Scholar

[15]

R. M. Strain and S.-B. Yun, Spatially homogeneous Boltzmann equation for relativistic particles,, SIAM J. Math. Anal., 46 (2014), 917.  doi: 10.1137/130923531.  Google Scholar

[16]

M. Toda, R. Kubo and N. Saitô, Statistical Physics I, Equilibrium Statistical Mechanics,, 2nd edition, (1992).   Google Scholar

[1]

Jakub Kantner, Michal Beneš. Mathematical model of signal propagation in excitable media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 935-951. doi: 10.3934/dcdss.2020382

[2]

Laura Aquilanti, Simone Cacace, Fabio Camilli, Raul De Maio. A Mean Field Games model for finite mixtures of Bernoulli and categorical distributions. Journal of Dynamics & Games, 2020  doi: 10.3934/jdg.2020033

[3]

Guihong Fan, Gail S. K. Wolkowicz. Chaotic dynamics in a simple predator-prey model with discrete delay. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 191-216. doi: 10.3934/dcdsb.2020263

[4]

Michel Chipot, Mingmin Zhang. On some model problem for the propagation of interacting species in a special environment. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020401

[5]

Jesús A. Álvarez López, Ramón Barral Lijó, John Hunton, Hiraku Nozawa, John R. Parker. Chaotic Delone sets. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021016

[6]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[7]

Gi-Chan Bae, Christian Klingenberg, Marlies Pirner, Seok-Bae Yun. BGK model of the multi-species Uehling-Uhlenbeck equation. Kinetic & Related Models, 2021, 14 (1) : 25-44. doi: 10.3934/krm.2020047

[8]

Paul A. Glendinning, David J. W. Simpson. A constructive approach to robust chaos using invariant manifolds and expanding cones. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020409

[9]

Xianwei Chen, Xiangling Fu, Zhujun Jing. Chaos control in a special pendulum system for ultra-subharmonic resonance. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 847-860. doi: 10.3934/dcdsb.2020144

[10]

Claude-Michel Brauner, Luca Lorenzi. Instability of free interfaces in premixed flame propagation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 575-596. doi: 10.3934/dcdss.2020363

[11]

Marcos C. Mota, Regilene D. S. Oliveira. Dynamic aspects of Sprott BC chaotic system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1653-1673. doi: 10.3934/dcdsb.2020177

[12]

Neil S. Trudinger, Xu-Jia Wang. Quasilinear elliptic equations with signed measure. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 477-494. doi: 10.3934/dcds.2009.23.477

[13]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[14]

Jérôme Lohéac, Chaouki N. E. Boultifat, Philippe Chevrel, Mohamed Yagoubi. Exact noise cancellation for 1d-acoustic propagation systems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020055

[15]

Riadh Chteoui, Abdulrahman F. Aljohani, Anouar Ben Mabrouk. Classification and simulation of chaotic behaviour of the solutions of a mixed nonlinear Schrödinger system. Electronic Research Archive, , () : -. doi: 10.3934/era.2021002

[16]

Ugo Bessi. Another point of view on Kusuoka's measure. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020404

[17]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, 2021, 14 (1) : 89-113. doi: 10.3934/krm.2020050

[18]

Fengwei Li, Qin Yue, Xiaoming Sun. The values of two classes of Gaussian periods in index 2 case and weight distributions of linear codes. Advances in Mathematics of Communications, 2021, 15 (1) : 131-153. doi: 10.3934/amc.2020049

[19]

Harrison Bray. Ergodicity of Bowen–Margulis measure for the Benoist 3-manifolds. Journal of Modern Dynamics, 2020, 16: 305-329. doi: 10.3934/jmd.2020011

[20]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (40)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]