December  2016, 9(4): 777-796. doi: 10.3934/krm.2016016

A blowup criterion for the 2D $k$-$\varepsilon$ model equations for turbulent flows

1. 

School of Mathematics and Information Science, Henan Polytechnic University, Jiaozuo 454000, Henan

2. 

School of Mathematics and Information Science, Henan Polytechnic University, Henan 454000, China

Received  September 2015 Revised  May 2016 Published  September 2016

We establish a blow up criterion for the two-dimensional $k$-$\varepsilon$ model equations for turbulent flows in a bounded smooth domain $\Omega$. It is shown that for the initial-boundary value problem of the 2D $k$-$\varepsilon$ model equations in a bounded smooth domain, if $\|\nabla u\|_{L^{1}(0, T; L^{\infty})}+\|\nabla\rho\|_{L^{2}(0, T; L^{\infty})} +\|\varepsilon\|_{L^{2}(0, T; L^{\infty})}$ $<\infty$, then the strong solution $(\rho, u, h,k, \varepsilon)$ can be extended beyond $T$.
Citation: Baoquan Yuan, Guoquan Qin. A blowup criterion for the 2D $k$-$\varepsilon$ model equations for turbulent flows. Kinetic & Related Models, 2016, 9 (4) : 777-796. doi: 10.3934/krm.2016016
References:
[1]

S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I,, Comm. Pure Appl. Math., 12 (1959), 623.  doi: 10.1002/cpa.3160120405.  Google Scholar

[2]

D. F. Bian and B. L. Guo, Global existence of smooth solutions to the $k$-$\varepsilon$ model equations for turbulent flows,, Comm. Math. Sci., 12 (2014), 707.  doi: 10.4310/CMS.2014.v12.n4.a6.  Google Scholar

[3]

T. Cazenave, An introduction to Nonlinear Schrödinger Equations,, UFRJ, (1996).   Google Scholar

[4]

J. S. Fan, S. Jiang and Y. B. Ou, A blow-up criterion for compressible viscous heat-conductive flows,, Ann. I. H. Poincaré-AN, 27 (2010), 337.  doi: 10.1016/j.anihpc.2009.09.012.  Google Scholar

[5]

D. Y. Fang, R. Z. Zi and T. Zhang, A blow-up criterion for two dimensional compressible viscous heat-conductive flows,, Nonlinear Anal., 75 (2012), 3130.  doi: 10.1016/j.na.2011.12.011.  Google Scholar

[6]

X. D. Huang, J. Li and Y. Wang, Serrin-type blowup criterion for the full compressible Navier-Stokes system,, Arch. Ration. Mech. Anal., 207 (2013), 303.  doi: 10.1007/s00205-012-0577-5.  Google Scholar

[7]

X. D. Huang, J. Li and Z. P. Xin, Blowup criterion for viscous baratropic flows with vacuum states,, Comm. Math. Phys., 301 (2011), 23.  doi: 10.1007/s00220-010-1148-y.  Google Scholar

[8]

X. D. Huang and Z. P. Xin, A blow-up criterion for classical solutions to the compressible Navier-Stokes equations,, Sci. China Math., 53 (2010), 671.  doi: 10.1007/s11425-010-0042-6.  Google Scholar

[9]

X. D. Huang, J. Li and Z. P. Xin, Serrin type criterion for the three-dimensional viscous compressible flows,, SIAM J. Math. Anal., 43 (2011), 1872.  doi: 10.1137/100814639.  Google Scholar

[10]

X. D. Huang and Y. Wang, Global strong solution to the 2D nonhomogeneous incompressible MHD system,, J. Differential Equations, 254 (2013), 511.  doi: 10.1016/j.jde.2012.08.029.  Google Scholar

[11]

S. Jiang and Y. B. Ou, A blow-up criterion for compressible viscous heat-conductive flows,, Acta Math. Sci. Ser. B Engl. Ed., 30 (2010), 1851.  doi: 10.1016/S0252-9602(10)60178-6.  Google Scholar

[12]

B. E. Launder and D. B. Spalding, Mathematical Models of Turbulence,, Academic Press, (1972).  doi: 10.1002/zamm.19730530619.  Google Scholar

[13]

O. Rozanova, Blow-up of smooth highly decreasing at infinity solutions to the compressible Navier-Stokes equations,, J. Differential Equations, 245 (2008), 1762.  doi: 10.1016/j.jde.2008.07.007.  Google Scholar

[14]

Y. Z. Sun, C. Wang and Z. F. Zhang, A Beale-Kato-Majda blow-up criterion for the 3-D compressible Navier-Stokes equations,, J. Math. Pures Appl., 95 (2011), 36.  doi: 10.1016/j.matpur.2010.08.001.  Google Scholar

[15]

Y. Z. Sun, C. Wang and Z. F. Zhang, A Beale-Kato-Majda criterion for three dimensional compressible viscous heat-conductive flows,, Arch. Ration. Mech. Anal., 201 (2011), 727.  doi: 10.1007/s00205-011-0407-1.  Google Scholar

[16]

Y. Wang, One new blowup criterion for the 2D full compressible Navier-Stokes system,, Nonlinear Anal. Real World Appl., 16 (2014), 214.  doi: 10.1016/j.nonrwa.2013.09.020.  Google Scholar

[17]

T. Wang, A regularity criterion of strong solutions to the 2D compressible magnetohydrodynamic equations,, Nonlinear Anal. Real World Appl., 31 (2016), 100.  doi: 10.1016/j.nonrwa.2016.01.011.  Google Scholar

[18]

H. Y. Wen and C. J. Zhu, Blow-up criterions of strong solutions to 3D compressible Navier-Stokes equations with vacuum,, Adv. Math., 248 (2013), 534.  doi: 10.1016/j.aim.2013.07.018.  Google Scholar

[19]

Z. P. Xin, Blowup of smooth solutions to the compressible Navier-Stokes equations with compact density,, Comm. Pure Appl. Math., 51 (1998), 229.  doi: 10.1002/(SICI)1097-0312(199803)51:3<229::AID-CPA1>3.0.CO;2-C.  Google Scholar

[20]

B. Q. Yuan and G. Q. Qin, Local existence of strong solutions to the $k$-$\varepsilon$ model equations for turbulent flows,, Bound. Value Probl., 27 (2016), 1.  doi: 10.1186/s13661-016-0532-8.  Google Scholar

[21]

B. Q. Yuan and X. K. Zhao, Blow-up criteria for the 2D full compressible MHD system,, Appl. Anal.: An International Journal, 93 (2014), 1339.  doi: 10.1080/00036811.2013.831076.  Google Scholar

show all references

References:
[1]

S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I,, Comm. Pure Appl. Math., 12 (1959), 623.  doi: 10.1002/cpa.3160120405.  Google Scholar

[2]

D. F. Bian and B. L. Guo, Global existence of smooth solutions to the $k$-$\varepsilon$ model equations for turbulent flows,, Comm. Math. Sci., 12 (2014), 707.  doi: 10.4310/CMS.2014.v12.n4.a6.  Google Scholar

[3]

T. Cazenave, An introduction to Nonlinear Schrödinger Equations,, UFRJ, (1996).   Google Scholar

[4]

J. S. Fan, S. Jiang and Y. B. Ou, A blow-up criterion for compressible viscous heat-conductive flows,, Ann. I. H. Poincaré-AN, 27 (2010), 337.  doi: 10.1016/j.anihpc.2009.09.012.  Google Scholar

[5]

D. Y. Fang, R. Z. Zi and T. Zhang, A blow-up criterion for two dimensional compressible viscous heat-conductive flows,, Nonlinear Anal., 75 (2012), 3130.  doi: 10.1016/j.na.2011.12.011.  Google Scholar

[6]

X. D. Huang, J. Li and Y. Wang, Serrin-type blowup criterion for the full compressible Navier-Stokes system,, Arch. Ration. Mech. Anal., 207 (2013), 303.  doi: 10.1007/s00205-012-0577-5.  Google Scholar

[7]

X. D. Huang, J. Li and Z. P. Xin, Blowup criterion for viscous baratropic flows with vacuum states,, Comm. Math. Phys., 301 (2011), 23.  doi: 10.1007/s00220-010-1148-y.  Google Scholar

[8]

X. D. Huang and Z. P. Xin, A blow-up criterion for classical solutions to the compressible Navier-Stokes equations,, Sci. China Math., 53 (2010), 671.  doi: 10.1007/s11425-010-0042-6.  Google Scholar

[9]

X. D. Huang, J. Li and Z. P. Xin, Serrin type criterion for the three-dimensional viscous compressible flows,, SIAM J. Math. Anal., 43 (2011), 1872.  doi: 10.1137/100814639.  Google Scholar

[10]

X. D. Huang and Y. Wang, Global strong solution to the 2D nonhomogeneous incompressible MHD system,, J. Differential Equations, 254 (2013), 511.  doi: 10.1016/j.jde.2012.08.029.  Google Scholar

[11]

S. Jiang and Y. B. Ou, A blow-up criterion for compressible viscous heat-conductive flows,, Acta Math. Sci. Ser. B Engl. Ed., 30 (2010), 1851.  doi: 10.1016/S0252-9602(10)60178-6.  Google Scholar

[12]

B. E. Launder and D. B. Spalding, Mathematical Models of Turbulence,, Academic Press, (1972).  doi: 10.1002/zamm.19730530619.  Google Scholar

[13]

O. Rozanova, Blow-up of smooth highly decreasing at infinity solutions to the compressible Navier-Stokes equations,, J. Differential Equations, 245 (2008), 1762.  doi: 10.1016/j.jde.2008.07.007.  Google Scholar

[14]

Y. Z. Sun, C. Wang and Z. F. Zhang, A Beale-Kato-Majda blow-up criterion for the 3-D compressible Navier-Stokes equations,, J. Math. Pures Appl., 95 (2011), 36.  doi: 10.1016/j.matpur.2010.08.001.  Google Scholar

[15]

Y. Z. Sun, C. Wang and Z. F. Zhang, A Beale-Kato-Majda criterion for three dimensional compressible viscous heat-conductive flows,, Arch. Ration. Mech. Anal., 201 (2011), 727.  doi: 10.1007/s00205-011-0407-1.  Google Scholar

[16]

Y. Wang, One new blowup criterion for the 2D full compressible Navier-Stokes system,, Nonlinear Anal. Real World Appl., 16 (2014), 214.  doi: 10.1016/j.nonrwa.2013.09.020.  Google Scholar

[17]

T. Wang, A regularity criterion of strong solutions to the 2D compressible magnetohydrodynamic equations,, Nonlinear Anal. Real World Appl., 31 (2016), 100.  doi: 10.1016/j.nonrwa.2016.01.011.  Google Scholar

[18]

H. Y. Wen and C. J. Zhu, Blow-up criterions of strong solutions to 3D compressible Navier-Stokes equations with vacuum,, Adv. Math., 248 (2013), 534.  doi: 10.1016/j.aim.2013.07.018.  Google Scholar

[19]

Z. P. Xin, Blowup of smooth solutions to the compressible Navier-Stokes equations with compact density,, Comm. Pure Appl. Math., 51 (1998), 229.  doi: 10.1002/(SICI)1097-0312(199803)51:3<229::AID-CPA1>3.0.CO;2-C.  Google Scholar

[20]

B. Q. Yuan and G. Q. Qin, Local existence of strong solutions to the $k$-$\varepsilon$ model equations for turbulent flows,, Bound. Value Probl., 27 (2016), 1.  doi: 10.1186/s13661-016-0532-8.  Google Scholar

[21]

B. Q. Yuan and X. K. Zhao, Blow-up criteria for the 2D full compressible MHD system,, Appl. Anal.: An International Journal, 93 (2014), 1339.  doi: 10.1080/00036811.2013.831076.  Google Scholar

[1]

Ming Lu, Yi Du, Zheng-An Yao, Zujin Zhang. A blow-up criterion for the 3D compressible MHD equations. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1167-1183. doi: 10.3934/cpaa.2012.11.1167

[2]

Xiaojing Xu. Local existence and blow-up criterion of the 2-D compressible Boussinesq equations without dissipation terms. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1333-1347. doi: 10.3934/dcds.2009.25.1333

[3]

Xin Zhong. A blow-up criterion for three-dimensional compressible magnetohydrodynamic equations with variable viscosity. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3249-3264. doi: 10.3934/dcdsb.2018318

[4]

Anthony Suen. Corrigendum: A blow-up criterion for the 3D compressible magnetohydrodynamics in terms of density. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1387-1390. doi: 10.3934/dcds.2015.35.1387

[5]

Anthony Suen. A blow-up criterion for the 3D compressible magnetohydrodynamics in terms of density. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3791-3805. doi: 10.3934/dcds.2013.33.3791

[6]

Yinxia Wang. A remark on blow up criterion of three-dimensional nematic liquid crystal flows. Evolution Equations & Control Theory, 2016, 5 (2) : 337-348. doi: 10.3934/eect.2016007

[7]

Ming Lu, Yi Du, Zheng-An Yao. Blow-up phenomena for the 3D compressible MHD equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1835-1855. doi: 10.3934/dcds.2012.32.1835

[8]

Xinwei Yu, Zhichun Zhai. On the Lagrangian averaged Euler equations: local well-posedness and blow-up criterion. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1809-1823. doi: 10.3934/cpaa.2012.11.1809

[9]

Yan Jia, Xingwei Zhang, Bo-Qing Dong. Remarks on the blow-up criterion for smooth solutions of the Boussinesq equations with zero diffusion. Communications on Pure & Applied Analysis, 2013, 12 (2) : 923-937. doi: 10.3934/cpaa.2013.12.923

[10]

Dapeng Du, Yifei Wu, Kaijun Zhang. On blow-up criterion for the nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3639-3650. doi: 10.3934/dcds.2016.36.3639

[11]

Tong Tang, Hongjun Gao. Local strong solutions to the compressible viscous magnetohydrodynamic equations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1617-1633. doi: 10.3934/dcdsb.2016014

[12]

Dehua Wang. Global solution for the mixture of real compressible reacting flows in combustion. Communications on Pure & Applied Analysis, 2004, 3 (4) : 775-790. doi: 10.3934/cpaa.2004.3.775

[13]

Yu-Zhu Wang, Weibing Zuo. On the blow-up criterion of smooth solutions for Hall-magnetohydrodynamics system with partial viscosity. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1327-1336. doi: 10.3934/cpaa.2014.13.1327

[14]

Yi-hang Hao, Xian-Gao Liu. The existence and blow-up criterion of liquid crystals system in critical Besov space. Communications on Pure & Applied Analysis, 2014, 13 (1) : 225-236. doi: 10.3934/cpaa.2014.13.225

[15]

Yinghua Li, Shijin Ding, Mingxia Huang. Blow-up criterion for an incompressible Navier-Stokes/Allen-Cahn system with different densities. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1507-1523. doi: 10.3934/dcdsb.2016009

[16]

Bin Li. On the blow-up criterion and global existence of a nonlinear PDE system in biological transport networks. Kinetic & Related Models, 2019, 12 (5) : 1131-1162. doi: 10.3934/krm.2019043

[17]

Victor A. Galaktionov, Juan-Luis Vázquez. The problem Of blow-up in nonlinear parabolic equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 399-433. doi: 10.3934/dcds.2002.8.399

[18]

Júlia Matos. Unfocused blow up solutions of semilinear parabolic equations. Discrete & Continuous Dynamical Systems - A, 1999, 5 (4) : 905-928. doi: 10.3934/dcds.1999.5.905

[19]

Yang Liu, Sining Zheng, Huapeng Li, Shengquan Liu. Strong solutions to Cauchy problem of 2D compressible nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3921-3938. doi: 10.3934/dcds.2017165

[20]

Eleftherios Gkioulekas, Ka Kit Tung. On the double cascades of energy and enstrophy in two dimensional turbulence. Part 1. Theoretical formulation. Discrete & Continuous Dynamical Systems - B, 2005, 5 (1) : 79-102. doi: 10.3934/dcdsb.2005.5.79

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]