Test  






 
#1  




1  


#2  








#3  


250  

30  

#4  


250  

30  

In this paper we consider the modeling of opinion dynamics over time dependent large scale networks. A kinetic description of the agents' distribution over the evolving network is considered which combines an opinion update based on binary interactions between agents with a dynamic creation and removal process of new connections. The number of connections of each agent influences the spreading of opinions in the network but also the way connections are created is influenced by the agents' opinion. The evolution of the network of connections is studied by showing that its asymptotic behavior is consistent both with Poisson distributions and truncated powerlaws. In order to study the large time behavior of the opinion dynamics a mean field description is derived which allows to compute exact stationary solutions in some simplified situations. Numerical methods which are capable to describe correctly the large time behavior of the system are also introduced and discussed. Finally, several numerical examples showing the influence of the agents' number of connections in the opinion dynamics are reported.
Citation: 
Figure 1.
Stationary states of (21) with relaxation coefficients
Figure 4.
Test
Figure 5.
Test
Figure 6.
Test
Figure 7.
Test
Figure 8.
Test
Figure 9.
Test
Figure 10.
Test
Figure 11.
Test
Figure 12.
Test
Table 1. Parameters in the various test cases
Test  






 
#1  




1  


#2  








#3  


250  

30  

#4  


250  

30  

[1]  D. Acemoglu and O. Asuman, Opinion dynamics and learning in social networks, Dynamic Games and Applications, 1 (2011), 349. doi: 10.1007/s1323501000041. 
[2]  R. Albert and A.L. Barabási, Statistical mechanics of complex networks, Reviews of Modern Physics, 74 (2002), 147. doi: 10.1103/RevModPhys.74.47. 
[3]  G. Albi and L. Pareschi, Binary interaction algorithm for the simulation of flocking and swarming dynamics, SIAM Journal on Multiscale Modeling and Simulations, 11 (2013), 129. doi: 10.1137/120868748. 
[4]  G. Albi, M. Herty and L. Pareschi, Kinetic description of optimal control problems and applications to opinion consensus, Communications in Mathematical Sciences, 13 (2015), 14071429. doi: 10.4310/CMS.2015.v13.n6.a3. 
[5]  G. Albi, L. Pareschi and M. Zanella, Boltzmanntype control of opinion consensus through leaders, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 372 (2014), 20140138. doi: 10.1098/rsta.2014.0138. 
[6]  G. Albi, L. Pareschi and M. Zanella, On the optimal control of opinion dynamics on evolving networks, IFIP TC7 2015 Proceedings, to appear. doi: 10.1155/2015/850124. 
[7]  L.A.N. Amaral, A. Scala, M. Bathélemy and H. E. Stanley, Classes of smallworld networks, Proceedings of the National Academy of Sciences of the United States of America, 97 (2000), 1114911152. doi: 10.1073/pnas.200327197. 
[8]  A. Aydogdo, M. Caponigro, S. McQuade, B. Piccoli, N. Pouradier Duteil, F. Rossi and E. Trélat, Interaction network, state space and control in social dynamics, In Active Particle Volume 1, Theory, Methods, and Applications, Eds. N. Bellomo, P. Degond, E. Tadmor. To appear. 
[9]  A.L. Barabási and R. Albert, Emergence of scaling in random networks, Science, 286 (1999), 509512. doi: 10.1126/science.286.5439.509. 
[10]  A.L. Barabási, R. Albert and H. Jeong, Meanfield theory for scalefree random networks, Physica A: Statistical Mechanics and its Applications, 272 (1999), 173187. 
[11]  L. Boudin, R. Monaco and F. Salvarani, Kinetic model for multidimensional opinion formation, Physical Review E, 81 (2010), 036109. doi: 10.1103/PhysRevE.81.036109. 
[12]  C. Brugna and G. Toscani, Kinetic models of opinion formation in the presence of personal conviction, Physical Review E, 92 052818,2015. doi: 10.1103/PhysRevE.92.052818. 
[13]  C. Buet, S. Cordier and V. Dos Santos, A conservative and entropy scheme for a simplified model of granular media, Transport Theory and Statistical Physics, 33 (2004), 125155. doi: 10.1081/TT120037804. 
[14]  C. Buet and S. Dellacherie, On the Chang and Cooper numerical scheme applied to a linear FokkerPlanck equation, Communications in Mathematical Sciences, 8 (2010), 10791090. doi: 10.4310/CMS.2010.v8.n4.a15. 
[15]  J.S. Chang and G. Cooper, A practical difference scheme for FokkerPlanck equation, Journal of Computational Physics, 6 (1970), 116. doi: 10.1016/00219991(70)90001X. 
[16]  A. Das, S. Gollapudi and K. Munagala, Modeling opinion dynamics in social networks, Proceedings of the 7th ACM International Conference on Web Search and Data Mining, (2014), 403412. doi: 10.1145/2556195.2559896. 
[17]  M. Dolfin and M. Lachowicz, Modeling opinion dynamics: how the network enhances consensus, Networks & Heterogeneous Media, 10 (2015), 877896. doi: 10.3934/nhm.2015.10.877. 
[18]  B. Düring, P.A. Markowich, J.F. Pietschmann and M.T. Wolfram, Boltzmann and FokkerPlanck equations modelling opinion formation in the presence of strong leaders, Proceedings of the Royal Society of London A, 465 (2009), 36873708. doi: 10.1098/rspa.2009.0239. 
[19]  B. Düring and M. T. Wolfram, Opinion dynamics: Inhomogeneous Boltzmanntype equations modelling opinion leadership and political segregation Proceedings of the Royal Society of London A, 471 (2015), 20150345. doi: 10.1098/rspa.2015.0345. 
[20]  R. Hegselmann and U. Krause, Opinion dynamics and bounded confidence, models, analysis and simulation, Journal of Artifcial Societies and Social Simulation, 5(3): 2,2002. 
[21]  E.W. Larsen, C.D. Levermore, G.C. Pomraning and J.G. Sanderson, Discretization methods for onedimensional FokkerPlanck operators, Journal of Computational Physics, 61 (1985), 359390. doi: 10.1016/00219991(85)900701. 
[22]  M. E. J. Newman, The structure and function on complex networks, SIAM Review, 45 (2003), 167256. doi: 10.1137/S003614450342480. 
[23]  M. Mohammadi and A. Borzí, Analysis of the ChangCooper discretization scheme for a class of FokkerPlanck equations, Journal of Numerical Mathematics, 23 (2015), 271288. doi: 10.1515/jnma20150018. 
[24]  L. Pareschi and G. Russo, An introduction to Monte Carlo methods for the Boltzmann equation, ESAIM: Proceedings, EDP Sciences, 10 (2001), 3575. doi: 10.1051/proc:2001004. 
[25]  L. Pareschi and G. Toscani, Interacting Multiagent Systems. Kinetic Equations and Monte Carlo Methods, Oxford University Press, 2013. 
[26]  L. Pareschi and G. Toscani, Wealth distribution and collective knowledge: A Boltzmann approach Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 372 (2014), 20130396. doi: 10.1098/rsta.2013.0396. 
[27]  L. Pareschi, P. Vellucci and M. Zanella, Kinetic Models of Collective Decisionmaking in the Presence of Equality Bias, Physica A: Statistical Mechanics and its Applications, 2016. doi: 10.1016/j.physa.2016.10.003. 
[28]  S. Patterson and B. Bamieh, Interactiondriven opinion dynamics in online social networks, S. Patterson and B. Bamieh, Interactiondriven opinion dynamics in online social networks, Proceedings of the First Workshop on Social Media Analytics, (2010), 98110. doi: 10.1145/1964858.1964872. 
[29]  W. Quattrociocchi, G. Caldarelli and A. Scala, Opinion dynamics on interacting networks: Media competition and social influence Scientific Reports, 4 (2014), p4938. doi: 10.1038/srep04938. 
[30]  S.H. Strogatz, Exploring complex networks, Nature, 410 (2001), 268276. doi: 10.1038/35065725. 
[31]  K. SznajdWeron and J. Sznajd, Opinion evolution in closed community, International Journal of Modern Physics C, 11 (2000), 11971165. doi: 10.1142/S0129183100000936. 
[32]  G. Toscani, Kinetic models of opinion formation, Communications in Mathematical Sciences, 4 (2006), 481496. doi: 10.4310/CMS.2006.v4.n3.a1. 
[33]  D.J. Watts and S.H. Strogatz, Collective dynamics of 'smallworld' networks, Nature, 393 (1998), 440442. 
[34]  Y.B. Xie, T. Zhou and B.H. Wang, Scalefree networks without growth, Physica A, 387 (2008), 16831688. doi: 10.1016/j.physa.2007.11.005. 