• Previous Article
    Weighted fast diffusion equations (Part Ⅱ): Sharp asymptotic rates of convergence in relative error by entropy methods
  • KRM Home
  • This Issue
  • Next Article
    Opinion dynamics over complex networks: Kinetic modelling and numerical methods
March  2017, 10(1): 33-59. doi: 10.3934/krm.2017002

Weighted fast diffusion equations (Part Ⅰ): Sharp asymptotic rates without symmetry and symmetry breaking in Caffarelli-Kohn-Nirenberg inequalities

1. 

Departamento de Matemáticas, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain

2. 

Ceremade, UMR CNRS nr. 7534, Université Paris-Dauphine, PSL Research University, Place de Lattre de Tassigny, 75775 Paris Cedex 16, France

3. 

Dipartimento di Matematica Felice Casorati, Università degli Studi di Pavia, Via A. Ferrata 5, 27100 Pavia, Italy

4. 

SAMM, Université Paris 1, 90, rue de Tolbiac, 75634 Paris Cedex 13, France

* Corresponding author.

Received  February 2016 Revised  June 2016 Published  November 2016

In this paper we consider a family of Caffarelli-Kohn-Nirenberg interpolation inequalities (CKN), with two radial power law weights and exponents in a subcritical range. We address the question of symmetry breaking: are the optimal functions radially symmetric, or not? Our intuition comes from a weighted fast diffusion (WFD) flow: if symmetry holds, then an explicit entropy -entropy production inequality which governs the intermediate asymptotics is indeed equivalent to (CKN), and the self-similar profiles are optimal for (CKN).

We establish an explicit symmetry breaking condition by proving the linear instability of the radial optimal functions for (CKN). Symmetry breaking in (CKN) also has consequences on entropy -entropy production inequalities and on the intermediate asymptotics for (WFD). Even when no symmetry holds in (CKN), asymptotic rates of convergence of the solutions to (WFD) are determined by a weighted Hardy-Poincaré inequality which is interpretedas a linearized entropy -entropy production inequality. All our results rely on the study of the bottom of the spectrum of the linearized diffusion operator around the self-similar profiles, which is equivalent to the linearization of (CKN) around the radial optimal functions, and on variational methods.Consequences for the (WFD) flow will be studied in Part Ⅱ of this work.

Citation: Matteo Bonforte, Jean Dolbeault, Matteo Muratori, Bruno Nazaret. Weighted fast diffusion equations (Part Ⅰ): Sharp asymptotic rates without symmetry and symmetry breaking in Caffarelli-Kohn-Nirenberg inequalities. Kinetic & Related Models, 2017, 10 (1) : 33-59. doi: 10.3934/krm.2017002
References:
[1]

S. Angenent, Large time asymptotics for the porous media equation, in Nonlinear diffusion equations and their equilibrium states, I (Berkeley, CA, 1986), vol. 12 of Math. Sci. Res. Inst. Publ., Springer, New York, 1988, 21–34, URL http://dx.doi.org/10.1007/978-1-4613-9605-5_2. doi: 10.1007/978-1-4613-9605-5_2.  Google Scholar

[2]

A. Arnold, J. A. Carrillo, L. Desvillettes, J. Dolbeault, A. Jüngel, C. Lederman, P. A. Markowich, G. Toscani and C. Villani, Entropies and equilibria of many-particle systems: an essay on recent research, Monatsh. Math., 142 (2004), 35–43, URL http://dx.doi.org/10.1007/978-3-7091-0609-9_5. doi: 10.1007/s00605-004-0239-2.  Google Scholar

[3]

A. Arnold, P. Markowich, G. Toscani and A. Unterreiter, On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations, Comm. Partial Differential Equations, 26 (2001), 43–100, URL https://dx.doi.org/10.1081/PDE-100002246. doi: 10.1081/PDE-100002246.  Google Scholar

[4]

A. Blanchet, M. Bonforte, J. Dolbeault, G. Grillo and J. -L. Vázquez, Hardy-Poincaré inequalities and applications to nonlinear diffusions, C. R. Math. Acad. Sci. Paris, 344 (2007), 431–436, URL http://dx.doi.org/10.1016/j.crma.2007.01.011. doi: 10.1016/j.crma.2007.01.011.  Google Scholar

[5]

A. Blanchet, M. Bonforte, J. Dolbeault, G. Grillo and J. L. Vázquez, Asymptotics of the fast diffusion equation via entropy estimates, Archive for Rational Mechanics and Analysis, 191 (2009), 347–385, URL http://dx.doi.org/10.1007/s00205-008-0155-z. doi: 10.1007/s00205-008-0155-z.  Google Scholar

[6]

S. G. Bobkov and M. Ledoux, Weighted Poincaré-type inequalities for Cauchy and other convex measures, Ann. Probab., 37 (2009), 403–427, URL https://dx.doi.org/10.1214/08-AOP407. doi: 10.1214/08-AOP407.  Google Scholar

[7]

M. Bonforte, J. Dolbeault, G. Grillo and J. L. Vázquez, Sharp rates of decay of solutions to the nonlinear fast diffusion equation via functional inequalities, Proc. Natl. Acad. Sci. USA, 107 (2010), 16459–16464, URL http://dx.doi.org/10.1073/pnas.1003972107. doi: 10.1073/pnas.1003972107.  Google Scholar

[8]

M. Bonforte, J. Dolbeault, M. Muratori and B. Nazaret, Weighted fast diffusion equations (Part Ⅱ): Sharp asymptotic rates of convergence in relative error by entropy methods, to appear in Kinet. Relat. Models, Preprint hal-01279327 & arXiv: 1602.08315, (2016). Google Scholar

[9]

M. Bonforte, G. Grillo and J. L. Vázquez, Special fast diffusion with slow asymptotics: Entropy method and flow on a Riemannian manifold, Archive for Rational Mechanics and Analysis, 196 (2010), 631–680, URL http://dx.doi.org/10.1007/s00205-009-0252-7. doi: 10.1007/s00205-009-0252-7.  Google Scholar

[10]

M. Bonforte and J. L. Vázquez, Global positivity estimates and Harnack inequalities for the fast diffusion equation, J. Funct. Anal., 240 (2006), 399–428, URL http://dx.doi.org/10.1016/j.jfa.2006.07.009. doi: 10.1016/j.jfa.2006.07.009.  Google Scholar

[11]

M. J. Cáceres and G. Toscani, Kinetic approach to long time behavior of linearized fast diffusion equations, J. Stat. Phys., 128 (2007), 883–925, URL http://dx.doi.org/10.1007/s10955-007-9329-6. doi: 10.1007/s10955-007-9329-6.  Google Scholar

[12]

L. Caffarelli, R. Kohn and L. Nirenberg, First order interpolation inequalities with weights, Compositio Math., 53 (1984), 259–275, URL http://eudml.org/doc/89687.  Google Scholar

[13]

J. A. Carrillo, A. Jüngel, P. A. Markowich, G. Toscani and A. Unterreiter, Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities, Monatsh. Math., 133 (2001), 1–82, URL http://dx.doi.org/10.1007/s006050170032. doi: 10.1007/s006050170032.  Google Scholar

[14]

J. A. Carrillo, C. Lederman, P. A. Markowich and G. Toscani, Poincaré inequalities for linearizations of very fast diffusion equations, Nonlinearity, 15 (2002), 565–580, URL http://dx.doi.org/10.1088/0951-7715/15/3/303. doi: 10.1088/0951-7715/15/3/303.  Google Scholar

[15]

J. A. Carrillo, P. A. Markowich and A. Unterreiter, Large-time asymptotics of porous-medium type equations, in Free boundary problems: theory and applications, I (Chiba, 1999), vol. 13 of GAKUTO Internat. Ser. Math. Sci. Appl., Gakk¯otosho, Tokyo, 2000, 24–36.  Google Scholar

[16]

J. A. Carrillo and G. Toscani, Asymptotic L1-decay of solutions of the porous medium equation to self-similarity, Indiana Univ. Math. J., 49 (2000), 113–142. doi: 10.1512/iumj.2000.49.1756.  Google Scholar

[17]

J. A. Carrillo and G. Toscani, Contractive probability metrics and asymptotic behavior of dissipative kinetic equations, Riv. Mat. Univ. Parma (7), 6 (2007), 75–198.  Google Scholar

[18]

J. A. Carrillo and J. L. Vázquez, Fine asymptotics for fast diffusion equations, Comm. Partial Differential Equations, 28 (2003), 1023–1056, URL http://dx.doi.org/10.1081/PDE-120021185. doi: 10.1081/PDE-120021185.  Google Scholar

[19]

F. Catrina and Z. -Q. Wang, On the Caffarelli-Kohn-Nirenberg inequalities: Sharp constants, existence (and nonexistence), and symmetry of extremal functions, Comm. Pure Appl. Math., 54 (2001), 229–258, URL http://dx.doi.org/10.1002/1097-0312(200102)54:2<229::AID-CPA4>3.0.CO;2-I. doi: 10.1002/1097-0312(200102)54:2<229::AID-CPA4>3.0.CO;2-I.  Google Scholar

[20]

M. Del Pino and J. Dolbeault, Best constants for Gagliardo-Nirenberg inequalities and applications to nonlinear diffusions, J. Math. Pures Appl. (9), 81 (2002), 847–875, URL http://dx.doi.org/10.1016/S0021-7824(02)01266-7. doi: 10.1016/S0021-7824(02)01266-7.  Google Scholar

[21]

M. Del Pino, J. Dolbeault, S. Filippas and A. Tertikas, A logarithmic Hardy inequality, Journal of Functional Analysis, 259 (2010), 2045–2072, URL http://dx.doi.org/10.1016/j.jfa.2010.06.005. doi: 10.1016/j.jfa.2010.06.005.  Google Scholar

[22]

J. Denzler, H. Koch and R. J. McCann, Higher-order time asymptotics of fast diffusion in Euclidean space: A dynamical systems approach, Mem. Amer. Math. Soc., 234 (2015), vi+81pp, URL https://dx.doi.org/10.1090/memo/1101. doi: 10.1090/memo/1101.  Google Scholar

[23]

J. Denzler and R. J. McCann, Phase transitions and symmetry breaking in singular diffusion, Proc. Natl. Acad. Sci. USA, 100 (2003), 6922–6925 (electronic), URL http://dx.doi.org/10.1073/pnas.1231896100. doi: 10.1073/pnas.1231896100.  Google Scholar

[24]

J. Denzler and R. J. McCann, Fast diffusion to self-similarity: Complete spectrum, longtime asymptotics, and numerology, Arch. Ration. Mech. Anal., 175 (2005), 301–342, URL http://dx.doi.org/10.1007/s00205-004-0336-3. doi: 10.1007/s00205-004-0336-3.  Google Scholar

[25]

J. Dolbeault and M. J. Esteban, Extremal functions for Caffarelli-Kohn-Nirenberg and logarithmic Hardy inequalities, Proc. Roy. Soc. Edinburgh Sect. A, 142 (2012), 745–767, URL http://dx.doi.org/10.1017/S0308210510001101. doi: 10.1017/S0308210510001101.  Google Scholar

[26]

J. Dolbeault, M. J. Esteban, S. Filippas and A. Tertikas, Rigidity results with applications to best constants and symmetry of Caffarelli-Kohn-Nirenberg and logarithmic Hardy inequalities, Calc. Var. Partial Differential Equations, 54 (2015), 2465–2481, URL http://dx.doi.org/10.1007/s00526-015-0871-9. doi: 10.1007/s00526-015-0871-9.  Google Scholar

[27]

J. Dolbeault, M. J. Esteban and M. Loss, Rigidity versus symmetry breaking via nonlinear flows on cylinders and Euclidean spaces, to appear in Inventiones Mathematicae, URL http://link.springer.com/article/10.1007/s00222-016-0656-6, (2016). Google Scholar

[28]

J. Dolbeault, M. J. Esteban, M. Loss and M. Muratori, Symmetry for extremal functions in subcritical Caffarelli-Kohn-Nirenberg inequalities, to appear in C. R. Mathématique, Preprint hal-01318727 & arXiv: 1605.06373, (2016). doi: 10.1016/j.crma.2017.01.004.  Google Scholar

[29]

J. Dolbeault, M. J. Esteban, G. Tarantello and A. Tertikas, Radial symmetry and symmetry breaking for some interpolation inequalities, Calc. Var. Partial Differential Equations, 42 (2011), 461–485, URL https://dx.doi.org/10.1007/s00526-011-0394-y. doi: 10.1007/s00526-011-0394-y.  Google Scholar

[30]

J. Dolbeault, M. Muratori and B. Nazaret, Weighted interpolation inequalities: a perturbation approach, to appear in Mathematische Annalen, Preprint hal-01207009 & arXiv: 1509.09127, (2016). Google Scholar

[31]

J. Dolbeault and G. Toscani, Fast diffusion equations: matching large time asymptotics by relative entropy methods, Kinetic and Related Models, 4 (2011), 701–716, URL http://dx.doi.org/10.3934/krm.2011.4.701. doi: 10.3934/krm.2011.4.701.  Google Scholar

[32]

J. Dolbeault and G. Toscani, Improved interpolation inequalities, relative entropy and fast diffusion equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30 (2013), 917–934, URL http://dx.doi.org/10.1016/j.anihpc.2012.12.004. doi: 10.1016/j.anihpc.2012.12.004.  Google Scholar

[33]

J. Dolbeault and G. Toscani, Best matching Barenblatt profiles are delayed, Journal of Physics A: Mathematical and Theoretical, 48 (2015), 065206, 14pp, URL http://dx.doi.org/10.1088/1751-8113/48/6/065206. doi: 10.1088/1751-8113/48/6/065206.  Google Scholar

[34]

J. Dolbeault and G. Toscani, Nonlinear diffusions: Extremal properties of Barenblatt profiles, best matching and delays, Nonlinear Analysis: Theory, Methods & Applications, URL www.sciencedirect.com/science/article/pii/S0362546X15003880. Google Scholar

[35]

J. Dolbeault and G. Toscani, Stability results for logarithmic Sobolev and Gagliardo– Nirenberg inequalities, International Mathematics Research Notices, URL http://imrn.oxfordjournals.org/content/early/2015/05/15/imrn.rnv131.abstract. Google Scholar

[36]

V. Felli and M. Schneider, Perturbation results of critical elliptic equations of Caffarelli-KohnNirenberg type, J. Differential Equations, 191 (2003), 121–142, URL http://dx.doi.org/10.1016/S0022-0396(02)00085-2. doi: 10.1016/S0022-0396(02)00085-2.  Google Scholar

[37]

A. Friedman and S. Kamin, The asymptotic behavior of gas in an n-dimensional porous medium, Trans. Amer. Math. Soc., 262 (1980), 551–563, URL http://dx.doi.org/10.2307/1999846. doi: 10.2307/1999846.  Google Scholar

[38]

Y. J. Kim and R. J. McCann, Potential theory and optimal convergence rates in fast nonlinear diffusion, J. Math. Pures Appl. (9), 86 (2006), 42–67, URL http://dx.doi.org/10.1016/j.matpur.2006.01.002. doi: 10.1016/j.matpur.2006.01.002.  Google Scholar

[39]

C. Lederman and P. A. Markowich, On fast-diffusion equations with infinite equilibrium entropy and finite equilibrium mass, Comm. Partial Differential Equations, 28 (2003), 301– 332, URL http://dx.doi.org/10.1081/PDE-120019384. doi: 10.1081/PDE-120019384.  Google Scholar

[40]

A. Persson, Bounds for the discrete part of the spectrum of a semi-bounded Schrödinger operator, Math. Scand., 8 (1960), 143–153, URL http://gdz.sub.uni-goettingen.de/dms/load/?PID=GDZPPN002346214. doi: 10.7146/math.scand.a-10602.  Google Scholar

[41]

T. P. Witelski and A. J. Bernoff, Self-similar asymptotics for linear and nonlinear diffusion equations, Stud. Appl. Math., 100 (1998), 153–193, URL http://dx.doi.org/10.1111/1467-9590.00074. doi: 10.1111/1467-9590.00074.  Google Scholar

[42]

Y. B. Zel'dovič and G. I. Barenblatt, Asymptotic properties of self-preserving solutions of equations of unsteady motion of gas through porous media, Dokl. Akad. Nauk SSSR (N. S. ), 118 (1958), 671–674.  Google Scholar

show all references

References:
[1]

S. Angenent, Large time asymptotics for the porous media equation, in Nonlinear diffusion equations and their equilibrium states, I (Berkeley, CA, 1986), vol. 12 of Math. Sci. Res. Inst. Publ., Springer, New York, 1988, 21–34, URL http://dx.doi.org/10.1007/978-1-4613-9605-5_2. doi: 10.1007/978-1-4613-9605-5_2.  Google Scholar

[2]

A. Arnold, J. A. Carrillo, L. Desvillettes, J. Dolbeault, A. Jüngel, C. Lederman, P. A. Markowich, G. Toscani and C. Villani, Entropies and equilibria of many-particle systems: an essay on recent research, Monatsh. Math., 142 (2004), 35–43, URL http://dx.doi.org/10.1007/978-3-7091-0609-9_5. doi: 10.1007/s00605-004-0239-2.  Google Scholar

[3]

A. Arnold, P. Markowich, G. Toscani and A. Unterreiter, On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations, Comm. Partial Differential Equations, 26 (2001), 43–100, URL https://dx.doi.org/10.1081/PDE-100002246. doi: 10.1081/PDE-100002246.  Google Scholar

[4]

A. Blanchet, M. Bonforte, J. Dolbeault, G. Grillo and J. -L. Vázquez, Hardy-Poincaré inequalities and applications to nonlinear diffusions, C. R. Math. Acad. Sci. Paris, 344 (2007), 431–436, URL http://dx.doi.org/10.1016/j.crma.2007.01.011. doi: 10.1016/j.crma.2007.01.011.  Google Scholar

[5]

A. Blanchet, M. Bonforte, J. Dolbeault, G. Grillo and J. L. Vázquez, Asymptotics of the fast diffusion equation via entropy estimates, Archive for Rational Mechanics and Analysis, 191 (2009), 347–385, URL http://dx.doi.org/10.1007/s00205-008-0155-z. doi: 10.1007/s00205-008-0155-z.  Google Scholar

[6]

S. G. Bobkov and M. Ledoux, Weighted Poincaré-type inequalities for Cauchy and other convex measures, Ann. Probab., 37 (2009), 403–427, URL https://dx.doi.org/10.1214/08-AOP407. doi: 10.1214/08-AOP407.  Google Scholar

[7]

M. Bonforte, J. Dolbeault, G. Grillo and J. L. Vázquez, Sharp rates of decay of solutions to the nonlinear fast diffusion equation via functional inequalities, Proc. Natl. Acad. Sci. USA, 107 (2010), 16459–16464, URL http://dx.doi.org/10.1073/pnas.1003972107. doi: 10.1073/pnas.1003972107.  Google Scholar

[8]

M. Bonforte, J. Dolbeault, M. Muratori and B. Nazaret, Weighted fast diffusion equations (Part Ⅱ): Sharp asymptotic rates of convergence in relative error by entropy methods, to appear in Kinet. Relat. Models, Preprint hal-01279327 & arXiv: 1602.08315, (2016). Google Scholar

[9]

M. Bonforte, G. Grillo and J. L. Vázquez, Special fast diffusion with slow asymptotics: Entropy method and flow on a Riemannian manifold, Archive for Rational Mechanics and Analysis, 196 (2010), 631–680, URL http://dx.doi.org/10.1007/s00205-009-0252-7. doi: 10.1007/s00205-009-0252-7.  Google Scholar

[10]

M. Bonforte and J. L. Vázquez, Global positivity estimates and Harnack inequalities for the fast diffusion equation, J. Funct. Anal., 240 (2006), 399–428, URL http://dx.doi.org/10.1016/j.jfa.2006.07.009. doi: 10.1016/j.jfa.2006.07.009.  Google Scholar

[11]

M. J. Cáceres and G. Toscani, Kinetic approach to long time behavior of linearized fast diffusion equations, J. Stat. Phys., 128 (2007), 883–925, URL http://dx.doi.org/10.1007/s10955-007-9329-6. doi: 10.1007/s10955-007-9329-6.  Google Scholar

[12]

L. Caffarelli, R. Kohn and L. Nirenberg, First order interpolation inequalities with weights, Compositio Math., 53 (1984), 259–275, URL http://eudml.org/doc/89687.  Google Scholar

[13]

J. A. Carrillo, A. Jüngel, P. A. Markowich, G. Toscani and A. Unterreiter, Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities, Monatsh. Math., 133 (2001), 1–82, URL http://dx.doi.org/10.1007/s006050170032. doi: 10.1007/s006050170032.  Google Scholar

[14]

J. A. Carrillo, C. Lederman, P. A. Markowich and G. Toscani, Poincaré inequalities for linearizations of very fast diffusion equations, Nonlinearity, 15 (2002), 565–580, URL http://dx.doi.org/10.1088/0951-7715/15/3/303. doi: 10.1088/0951-7715/15/3/303.  Google Scholar

[15]

J. A. Carrillo, P. A. Markowich and A. Unterreiter, Large-time asymptotics of porous-medium type equations, in Free boundary problems: theory and applications, I (Chiba, 1999), vol. 13 of GAKUTO Internat. Ser. Math. Sci. Appl., Gakk¯otosho, Tokyo, 2000, 24–36.  Google Scholar

[16]

J. A. Carrillo and G. Toscani, Asymptotic L1-decay of solutions of the porous medium equation to self-similarity, Indiana Univ. Math. J., 49 (2000), 113–142. doi: 10.1512/iumj.2000.49.1756.  Google Scholar

[17]

J. A. Carrillo and G. Toscani, Contractive probability metrics and asymptotic behavior of dissipative kinetic equations, Riv. Mat. Univ. Parma (7), 6 (2007), 75–198.  Google Scholar

[18]

J. A. Carrillo and J. L. Vázquez, Fine asymptotics for fast diffusion equations, Comm. Partial Differential Equations, 28 (2003), 1023–1056, URL http://dx.doi.org/10.1081/PDE-120021185. doi: 10.1081/PDE-120021185.  Google Scholar

[19]

F. Catrina and Z. -Q. Wang, On the Caffarelli-Kohn-Nirenberg inequalities: Sharp constants, existence (and nonexistence), and symmetry of extremal functions, Comm. Pure Appl. Math., 54 (2001), 229–258, URL http://dx.doi.org/10.1002/1097-0312(200102)54:2<229::AID-CPA4>3.0.CO;2-I. doi: 10.1002/1097-0312(200102)54:2<229::AID-CPA4>3.0.CO;2-I.  Google Scholar

[20]

M. Del Pino and J. Dolbeault, Best constants for Gagliardo-Nirenberg inequalities and applications to nonlinear diffusions, J. Math. Pures Appl. (9), 81 (2002), 847–875, URL http://dx.doi.org/10.1016/S0021-7824(02)01266-7. doi: 10.1016/S0021-7824(02)01266-7.  Google Scholar

[21]

M. Del Pino, J. Dolbeault, S. Filippas and A. Tertikas, A logarithmic Hardy inequality, Journal of Functional Analysis, 259 (2010), 2045–2072, URL http://dx.doi.org/10.1016/j.jfa.2010.06.005. doi: 10.1016/j.jfa.2010.06.005.  Google Scholar

[22]

J. Denzler, H. Koch and R. J. McCann, Higher-order time asymptotics of fast diffusion in Euclidean space: A dynamical systems approach, Mem. Amer. Math. Soc., 234 (2015), vi+81pp, URL https://dx.doi.org/10.1090/memo/1101. doi: 10.1090/memo/1101.  Google Scholar

[23]

J. Denzler and R. J. McCann, Phase transitions and symmetry breaking in singular diffusion, Proc. Natl. Acad. Sci. USA, 100 (2003), 6922–6925 (electronic), URL http://dx.doi.org/10.1073/pnas.1231896100. doi: 10.1073/pnas.1231896100.  Google Scholar

[24]

J. Denzler and R. J. McCann, Fast diffusion to self-similarity: Complete spectrum, longtime asymptotics, and numerology, Arch. Ration. Mech. Anal., 175 (2005), 301–342, URL http://dx.doi.org/10.1007/s00205-004-0336-3. doi: 10.1007/s00205-004-0336-3.  Google Scholar

[25]

J. Dolbeault and M. J. Esteban, Extremal functions for Caffarelli-Kohn-Nirenberg and logarithmic Hardy inequalities, Proc. Roy. Soc. Edinburgh Sect. A, 142 (2012), 745–767, URL http://dx.doi.org/10.1017/S0308210510001101. doi: 10.1017/S0308210510001101.  Google Scholar

[26]

J. Dolbeault, M. J. Esteban, S. Filippas and A. Tertikas, Rigidity results with applications to best constants and symmetry of Caffarelli-Kohn-Nirenberg and logarithmic Hardy inequalities, Calc. Var. Partial Differential Equations, 54 (2015), 2465–2481, URL http://dx.doi.org/10.1007/s00526-015-0871-9. doi: 10.1007/s00526-015-0871-9.  Google Scholar

[27]

J. Dolbeault, M. J. Esteban and M. Loss, Rigidity versus symmetry breaking via nonlinear flows on cylinders and Euclidean spaces, to appear in Inventiones Mathematicae, URL http://link.springer.com/article/10.1007/s00222-016-0656-6, (2016). Google Scholar

[28]

J. Dolbeault, M. J. Esteban, M. Loss and M. Muratori, Symmetry for extremal functions in subcritical Caffarelli-Kohn-Nirenberg inequalities, to appear in C. R. Mathématique, Preprint hal-01318727 & arXiv: 1605.06373, (2016). doi: 10.1016/j.crma.2017.01.004.  Google Scholar

[29]

J. Dolbeault, M. J. Esteban, G. Tarantello and A. Tertikas, Radial symmetry and symmetry breaking for some interpolation inequalities, Calc. Var. Partial Differential Equations, 42 (2011), 461–485, URL https://dx.doi.org/10.1007/s00526-011-0394-y. doi: 10.1007/s00526-011-0394-y.  Google Scholar

[30]

J. Dolbeault, M. Muratori and B. Nazaret, Weighted interpolation inequalities: a perturbation approach, to appear in Mathematische Annalen, Preprint hal-01207009 & arXiv: 1509.09127, (2016). Google Scholar

[31]

J. Dolbeault and G. Toscani, Fast diffusion equations: matching large time asymptotics by relative entropy methods, Kinetic and Related Models, 4 (2011), 701–716, URL http://dx.doi.org/10.3934/krm.2011.4.701. doi: 10.3934/krm.2011.4.701.  Google Scholar

[32]

J. Dolbeault and G. Toscani, Improved interpolation inequalities, relative entropy and fast diffusion equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30 (2013), 917–934, URL http://dx.doi.org/10.1016/j.anihpc.2012.12.004. doi: 10.1016/j.anihpc.2012.12.004.  Google Scholar

[33]

J. Dolbeault and G. Toscani, Best matching Barenblatt profiles are delayed, Journal of Physics A: Mathematical and Theoretical, 48 (2015), 065206, 14pp, URL http://dx.doi.org/10.1088/1751-8113/48/6/065206. doi: 10.1088/1751-8113/48/6/065206.  Google Scholar

[34]

J. Dolbeault and G. Toscani, Nonlinear diffusions: Extremal properties of Barenblatt profiles, best matching and delays, Nonlinear Analysis: Theory, Methods & Applications, URL www.sciencedirect.com/science/article/pii/S0362546X15003880. Google Scholar

[35]

J. Dolbeault and G. Toscani, Stability results for logarithmic Sobolev and Gagliardo– Nirenberg inequalities, International Mathematics Research Notices, URL http://imrn.oxfordjournals.org/content/early/2015/05/15/imrn.rnv131.abstract. Google Scholar

[36]

V. Felli and M. Schneider, Perturbation results of critical elliptic equations of Caffarelli-KohnNirenberg type, J. Differential Equations, 191 (2003), 121–142, URL http://dx.doi.org/10.1016/S0022-0396(02)00085-2. doi: 10.1016/S0022-0396(02)00085-2.  Google Scholar

[37]

A. Friedman and S. Kamin, The asymptotic behavior of gas in an n-dimensional porous medium, Trans. Amer. Math. Soc., 262 (1980), 551–563, URL http://dx.doi.org/10.2307/1999846. doi: 10.2307/1999846.  Google Scholar

[38]

Y. J. Kim and R. J. McCann, Potential theory and optimal convergence rates in fast nonlinear diffusion, J. Math. Pures Appl. (9), 86 (2006), 42–67, URL http://dx.doi.org/10.1016/j.matpur.2006.01.002. doi: 10.1016/j.matpur.2006.01.002.  Google Scholar

[39]

C. Lederman and P. A. Markowich, On fast-diffusion equations with infinite equilibrium entropy and finite equilibrium mass, Comm. Partial Differential Equations, 28 (2003), 301– 332, URL http://dx.doi.org/10.1081/PDE-120019384. doi: 10.1081/PDE-120019384.  Google Scholar

[40]

A. Persson, Bounds for the discrete part of the spectrum of a semi-bounded Schrödinger operator, Math. Scand., 8 (1960), 143–153, URL http://gdz.sub.uni-goettingen.de/dms/load/?PID=GDZPPN002346214. doi: 10.7146/math.scand.a-10602.  Google Scholar

[41]

T. P. Witelski and A. J. Bernoff, Self-similar asymptotics for linear and nonlinear diffusion equations, Stud. Appl. Math., 100 (1998), 153–193, URL http://dx.doi.org/10.1111/1467-9590.00074. doi: 10.1111/1467-9590.00074.  Google Scholar

[42]

Y. B. Zel'dovič and G. I. Barenblatt, Asymptotic properties of self-preserving solutions of equations of unsteady motion of gas through porous media, Dokl. Akad. Nauk SSSR (N. S. ), 118 (1958), 671–674.  Google Scholar

Figure 1.  We consider the admissible range for the $(\beta,\gamma)$ parameters. The grey area is the area of validity of (2) and it is given by $\gamma-2 < \beta < \tfrac{d-2}d\,\gamma$ if $\gamma < d$ and $\tfrac{d-2}d\,\gamma < \beta < \gamma-2$ if $\gamma>d$: the cones corresponding to $\gamma < d$ and $\gamma>d$ are in one-to-one correspondance by an inversion symmetry: see details in Section 2.1 Notice that the case $\gamma>d$ has been excluded in (3) in order to simplify the statements. The hyperbola defined by the Felli & Schneider curve determines a region (dark grey area) of symmetry breaking which is valid for any $p\in(1,p_\star)$, and independent of $p$. However, since $p_\star$ depends on $\beta$ and $\gamma$, this induces an additional restriction on the admissible range of $(\beta,\gamma)$, which depends on $p$: see Fig.2 and Fig.3. Here we consider the special case $d=5$.
Figure 2.  With $d=3$, the left figure is essentially an enlargement of Fig.1 and represents the symmetry breaking region, while on the right figure, we choose $p=2$, so that the admissible range of parameters $(\beta,\gamma)$ is restricted by the condition $p\le p_\star(\beta,\gamma)$, i.e., $\beta\ge d-2-(d-\gamma)/p$. This lower bound corresponds to the line determined by the points $(\beta,\gamma)=(d-2,d)$ and $(\beta,\gamma)$ given by the condition $\Lambda_\star=\Lambda_{0,1}=\Lambda_{1,0}$. The curve $\beta=\sigma(\gamma,p)$ in Theorem 3 is represented by a dotted curve. To $\beta\ge\sigma(\gamma,p)$ corresponds the case $\Lambda=\Lambda_{0,1}\le\Lambda_{1,0}$, while $\beta\le\sigma(\gamma,p)$ corresponds to the case $\Lambda_{0,1}\ge\Lambda_{1,0}=\Lambda$, when $\gamma\in(-\infty,d)$.
Figure 3.  Enlargement of Fig.2 in a neighborhood of $(\beta,\gamma)=(0,0)$. On the right, the equality case $\Lambda_{0,1}=\Lambda_{1,0}$ determines the dotted curve $\beta=\sigma(\gamma,p)$. Notice that the symmetry breaking region is contained in the region in which the spectral gap is $\Lambda=\Lambda_{0,1}$.
Figure 4.  In the dark grey region, symmetry breaking occurs. The plot is done for $p=2$ and $d=3$. See Appendix B for a more detailed description of the properties of the lowest eigenvalues.
Figure 5.  The spectral gap and the lowest eigenvalues of $\mathcal L$ for $n=3$. The parabola represents $\Lambda_{\rm ess}$ as a function of $\delta$, $\Lambda_{1,0}$ is tangent to the parabola and $\Lambda_{0,1}$ is shown for $\eta=3.5$ (left), $\eta=1.4$ (center) and $\eta=0.35$ (right). The eigenvalues $\Lambda_{1,0}$ and $\Lambda_{0,1}$ are represented by a plain line only if the corresponding eigenvalues are in the space $\mathrm L^2(\mathbb{R}^d,\mathcal B^{2-m}\,|x|^{n-d}\,dx)$.
[1]

B. Abdellaoui, I. Peral. On quasilinear elliptic equations related to some Caffarelli-Kohn-Nirenberg inequalities. Communications on Pure & Applied Analysis, 2003, 2 (4) : 539-566. doi: 10.3934/cpaa.2003.2.539

[2]

Mayte Pérez-Llanos. Optimal power for an elliptic equation related to some Caffarelli-Kohn-Nirenberg inequalities. Communications on Pure & Applied Analysis, 2016, 15 (6) : 1975-2005. doi: 10.3934/cpaa.2016024

[3]

Pablo L. De Nápoli, Irene Drelichman, Ricardo G. Durán. Improved Caffarelli-Kohn-Nirenberg and trace inequalities for radial functions. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1629-1642. doi: 10.3934/cpaa.2012.11.1629

[4]

Bernhard Kawohl. Symmetry results for functions yielding best constants in Sobolev-type inequalities. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 683-690. doi: 10.3934/dcds.2000.6.683

[5]

Mateus Balbino Guimarães, Rodrigo da Silva Rodrigues. Elliptic equations involving linear and superlinear terms and critical Caffarelli-Kohn-Nirenberg exponent with sign-changing weight functions. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2697-2713. doi: 10.3934/cpaa.2013.12.2697

[6]

Hwai-Chiuan Wang. Stability and symmetry breaking of solutions of semilinear elliptic equations. Conference Publications, 2005, 2005 (Special) : 886-894. doi: 10.3934/proc.2005.2005.886

[7]

Judith Vancostenoble. Improved Hardy-Poincaré inequalities and sharp Carleman estimates for degenerate/singular parabolic problems. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 761-790. doi: 10.3934/dcdss.2011.4.761

[8]

Lucio Cadeddu, Giovanni Porru. Symmetry breaking in problems involving semilinear equations. Conference Publications, 2011, 2011 (Special) : 219-228. doi: 10.3934/proc.2011.2011.219

[9]

Roberta Bosi, Jean Dolbeault, Maria J. Esteban. Estimates for the optimal constants in multipolar Hardy inequalities for Schrödinger and Dirac operators. Communications on Pure & Applied Analysis, 2008, 7 (3) : 533-562. doi: 10.3934/cpaa.2008.7.533

[10]

Serena Dipierro. Geometric inequalities and symmetry results for elliptic systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3473-3496. doi: 10.3934/dcds.2013.33.3473

[11]

Craig Cowan. Optimal Hardy inequalities for general elliptic operators with improvements. Communications on Pure & Applied Analysis, 2010, 9 (1) : 109-140. doi: 10.3934/cpaa.2010.9.109

[12]

Gabriele Grillo, Matteo Muratori, Maria Michaela Porzio. Porous media equations with two weights: Smoothing and decay properties of energy solutions via Poincaré inequalities. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3599-3640. doi: 10.3934/dcds.2013.33.3599

[13]

J. Földes, Peter Poláčik. On cooperative parabolic systems: Harnack inequalities and asymptotic symmetry. Discrete & Continuous Dynamical Systems - A, 2009, 25 (1) : 133-157. doi: 10.3934/dcds.2009.25.133

[14]

Sara Barile, Addolorata Salvatore. Radial solutions of semilinear elliptic equations with broken symmetry on unbounded domains. Conference Publications, 2013, 2013 (special) : 41-49. doi: 10.3934/proc.2013.2013.41

[15]

Jean Dolbeault, Maria J. Esteban, Michał Kowalczyk, Michael Loss. Improved interpolation inequalities on the sphere. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 695-724. doi: 10.3934/dcdss.2014.7.695

[16]

Jean Dolbeault, Giuseppe Toscani. Fast diffusion equations: Matching large time asymptotics by relative entropy methods. Kinetic & Related Models, 2011, 4 (3) : 701-716. doi: 10.3934/krm.2011.4.701

[17]

Minghua Li, Chunrong Chen, Shengjie Li. Error bounds of regularized gap functions for nonmonotone Ky Fan inequalities. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-12. doi: 10.3934/jimo.2019001

[18]

Linfeng Mei, Zongming Guo. Morse indices and symmetry breaking for the Gelfand equation in expanding annuli. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1509-1523. doi: 10.3934/dcdsb.2017072

[19]

Lizhi Zhang. Symmetry of solutions to semilinear equations involving the fractional laplacian. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2393-2409. doi: 10.3934/cpaa.2015.14.2393

[20]

Elvise Berchio, Debdip Ganguly. Improved higher order poincaré inequalities on the hyperbolic space via Hardy-type remainder terms. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1871-1892. doi: 10.3934/cpaa.2016020

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (19)
  • HTML views (10)
  • Cited by (2)

[Back to Top]