\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A kinetic games framework for insurance plans

  • *Corresponding author: Daniel Brinkman

    *Corresponding author: Daniel Brinkman 
The authors are supported by NSF RNMS grant No.1107291.
Abstract / Introduction Full Text(HTML) Figure(9) Related Papers Cited by
  • The dynamics of insurance plans have been under the microscope in recent years due to the controversy surrounding the implementation of the Affordable Care Act (Obamacare) in the United States. In this paper, we introduce a game between an insurance company and an ensemble of customers choosing between several insurance plans. We then derive a kinetic model for the strategies of the insurer and the decisions of the customers and establish the conditions for which a Nash equilibrium exists for some specific customer distributions. Finally, we give some agent-based numerical results for how the plan enrollment evolves over time which show qualitative agreement to "experimental" results in the literature from two plans in the state of Massachusetts.

    Mathematics Subject Classification: Primary: 91A13, 82C40, 91A40; Secondary: 91B30.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Numerical examples for the first case of Theorem 3.2. All initial plan prices approach zero price trivial steady-states

    Figure 2.  Numerical examples for the second case of Theorem 3.2. Initial plan prices below $r = \alpha M = 5$ are essentially stationary steady-states. Initial plan prices above $r = \alpha M = 5$ decay to a steady-state near $r = 5$

    Figure 3.  Numerical examples for the third case of Theorem 3.2. All initial plan prices $0 < r < 10$ converge to a steady state with $r \approx 7.14$. The first case had a steady state price of $r=7.165$ and the second steady-state occurred for $r=7.160$

    Figure 4.  Numerical examples for the fourth case of Theorem 3.2. Every initial plan price increases to the maximum $M$. Note that according to Equation (24), a plan with an enrollment of zero has an undefined price. The simulation responds by setting the price to zero

    Figure 5.  For $\beta = 1.3$, all plans go extinct and profits go to zero. The insurer occasionally realizes negative profits

    Figure 6.  For $\beta = 4/3$, the theorem is unclear, but numerically we see relative stability of multiple plans. The insurer profits are bounded away from zero

    Figure 7.  For $\beta = 5/3$, we expect a unique steady state plan price. Although the random accidents eliminate a true steady state, we quickly reach a probabalistic steady state. The long-term profits are higher than the other cases

    Figure 8.  For $\beta = 7/3$, all plans go extinct and profits go to zero. Unlike the first case, the profits are always positive, but go to zero as the plan prices increase above the costs of the most expensive individual

    Figure 9.  Normalized profit as a function of the profit parameter $\beta$. Note that a local maximum occurs for the lowest possible surviving profit, suggesting that greediness on the part of the insurer may actually reduce profits

  • [1] M. BrugerA. Lorz and M.-T. Wolfram, On a boltzmann mean field model for knowledge growth, SIAM J. Appl. Math., 76 (2016), 1799-1818(20 pages).  doi: 10.1137/15M1018599.
    [2] M. BurgerL. A. CaffarelliP. A. Markowich and M.-T. Wolfram, On a boltzmann-type price formation model, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 469 (2013), 20130126.  doi: 10.1098/rspa.2013.0126.
    [3] M. BurgerL. A. CaffarelliP. A. Markowich and M.-T. Wolfram, On the asymptotic behavior of a boltzmann-type price formation model, Communications in Mathematical Sciences, 12 (2014), 1353-1361.  doi: 10.4310/CMS.2014.v12.n7.a10.
    [4] L. A. Caffarelli, P. A. Markowich and M.-T. Wolfram, On a price formation free boundary model by lasry and lions: The neumann problem, Comptes Rendus Mathematique, 349 (2011), 841–844, URL http://www.sciencedirect.com/science/article/pii/S1631073X11001932. doi: 10.1016/j.crma.2011.07.006.
    [5] L. A. Caffarelli, P. A. Markowich and J.-F. Pietschmann, On a price formation free boundary model by lasry and lions, Comptes Rendus Mathematique, 349 (2011), 621–624, URL http://www.sciencedirect.com/science/article/pii/S1631073X11001488. doi: 10.1016/j.crma.2011.05.011.
    [6] C. Camerer and T. Ho, Experience-weighted attraction learning in normal form games, Econometrica, 67 (1999), 827-874.  doi: 10.1111/1468-0262.00054.
    [7] C. F. Camerer, Behavioral Game Theory: Experiments in Strategic Interaction, Princeton University Press, 2003.
    [8] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz and Y. Singer, Online passive-aggressive algorithms, J. Mach. Learn. Res., 7 (2006), 551–585, URL http://dl.acm.org/citation.cfm?id=1248547.1248566.
    [9] D. M. Cutler and R. J. Zeckhauser, Adverse Selection in Health Insurance, Working Paper 6107, National Bureau of Economic Research, 1998. doi: 10.2202/1558-9544.1056.
    [10] P. Degond, J. -G. Liu and C. Ringhofer, A nash equilibrium macroscopic closure for kinetic models coupled with mean-field games, 2012.
    [11] P. Degond, J.-G. Liu and C. Ringhofer, Evolution of the distribution of wealth in an economic environment driven by local nash equilibria, Journal of Statistical Physics, 154 (2014), 751–780, URL http://dx.doi.org/10.1007/s10955-013-0888-4. doi: 10.1007/s10955-013-0888-4.
    [12] B. DüringP. MarkowichJ.-F. Pietschmann and M.-T. Wolfram, Boltzmann and fokker-planck equations modelling opinion formation in the presence of strong leaders, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 465 (2009), 3687-3708.  doi: 10.1098/rspa.2009.0239.
    [13] R. Dusansky and C. Koc, Implications of the interaction between insurance choice and medical care demand, Journal of Risk and Insurance, 77 (2010), 129-144.  doi: 10.1111/j.1539-6975.2009.01335.x.
    [14] J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics, Cambridge University Press, 1998. doi: 10.1017/CBO9781139173179.
    [15] S. Hoi, J. Wang and P. Zhao, Libol: A library for online learning algorithms, Journal of Machine Learning Research, 15 (2014), 495–499, URL http://jmlr.org/papers/v15/hoi14a.html.
    [16] J.-M. Lasry and P.-L. Lions, Mean field games, Japanese Journal of Mathematics, 2 (2007), 229–260, URL http://dx.doi.org/10.1007/s11537-007-0657-8. doi: 10.1007/s11537-007-0657-8.
    [17] J. F. Nash, Equilibrium points in n-person games, Proceedings of the National Academy of Sciences of the United States of America, 36 (1950), 48-89.  doi: 10.1073/pnas.36.1.48.
    [18] L. Pareschi and G. Toscani, Wealth distribution and collective knowledge: A boltzmann approach Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 372 (2014), 20130396, 15 pp. doi: 10.1098/rsta.2013.0396.
    [19] D. Schmeidler, Equilibrium points of nonatomic games, Journal of Statistical Physics, 7 (1973), 295-300.  doi: 10.1007/BF01014905.
    [20] N. Slonim, E. Yom-Tov and K. Crammer, Active online classification via information maximization, in Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence -Volume Volume Two, IJCAI'11, AAAI Press, 2011,1498-1504, URL http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-252
    [21] J. M. Smith and G. R. Price, The logic of animal conflict, Nature, 246 (1973), 15-18.  doi: 10.1038/246015a0.
    [22] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction, IEEE Transactions on Neural Networks, 9 (1998), p1054.  doi: 10.1109/TNN.1998.712192.
    [23] G. Toscani, Kinetic models of opinion formation, Communications in Mathematical Sciences, 4 (2006), 481-496.  doi: 10.4310/CMS.2006.v4.n3.a1.
    [24] G. Toscani and C. Brugna, Wealth redistribution in boltzmann-like models of conservative economies, in Econophysics and Economics of Games, Social Choices and Quantitative Techniques (eds. B. Basu, S. R. Chakravarty, B. K. Chakrabarti and K. Gangopadhyay), New Economic Windows, Springer Milan, 2010, 71-82, URL http://dx.doi.org/10.1007/978-88-470-1501-2_9. doi: 10.1007/978-88-470-1501-2_9.
    [25] C. Wilson, A model of insurance markets with incomplete information, Journal of Economic Theory, 16 (1977), 167–207, URL http://www.sciencedirect.com/science/article/pii/0022053177900047. doi: 10.1016/0022-0531(77)90004-7.
  • 加载中

Figures(9)

SHARE

Article Metrics

HTML views(1688) PDF downloads(113) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return