
-
Previous Article
A logistic equation with nonlocal interactions
- KRM Home
- This Issue
-
Next Article
A kinetic games framework for insurance plans
Balanced growth path solutions of a Boltzmann mean field game model for knowledge growth
1. | Institute for Computational and Applied Mathematics, University of Münster, Einsteinstrasse 62, 48149 Münster, Germany |
2. | CEMSE Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia |
3. | Sorbonne Universités, UPMC Univ Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris, France |
4. | CNRS, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris, France |
5. | INRIA-Paris-Rocquencourt, EPC MAMBA, Domaine de Voluceau, BP105, 78153 Le Chesnay Cedex, France |
6. | University of Warwick, Coventry CV4 7AL, UK |
7. | RICAM, Austrian Academy of Sciences, Altenbergerstr. 69,4040 Linz, Austria |
In this paper we study balanced growth path solutions of a Boltzmann mean field game model proposed by Lucas and Moll [
References:
[1] |
Y. Achdou, F. J. Buera, J. -M. Lasry, P. -L. Lions and B. Moll, Partial differential equation models in macroeconomics, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 372 (2014), 20130397, 19 pp.
doi: 10.1098/rsta.2013.0397. |
[2] |
F. E. Alvarez, F. J. Buera and R. E. Lucas Jr,
Models of Idea Flows, Technical report, National Bureau of Economic Research, 2008. |
[3] |
L. Boltzmann,
Weitere Studien über das Wärmegleichgewicht unter Gasmolekulen, Wien. Ber, 66 (1872), 275-370.
doi: 10.1007/978-3-322-84986-1_3. |
[4] |
L. Boudin and F. Salvarani, A kinetic approach to the study of opinion formation, M2AN Math. Model. Numer. Anal., 43 (2009), 507-522, URL http://dx.doi.org/10.1051/m2an/2009004.
doi: 10.1051/m2an/2009004. |
[5] |
M. Burger, L. Caffarelli, P. Markowich and M.-T. Wolfram,
On a Boltzmann-type price formation model, Proc. R. Soc. A, 469 (2013), 20130126.
doi: 10.1098/rspa.2013.0126. |
[6] |
M. Burger, A. Lorz and M.-T. Wolfram,
On a Boltzmann mean field model for knowledge growth, SIAM J. Appl. Math., 76 (2016), 1799-1818.
doi: 10.1137/15M1018599. |
[7] | |
[8] |
P. Degond, J.-G. Liu and C. Ringhofer,
Large-scale dynamics of mean-field games driven by local Nash equilibria, Journal of Nonlinear Science, 24 (2014), 93-115.
doi: 10.1007/s00332-013-9185-2. |
[9] |
R. J. DiPerna and P.-L. Lions,
On the Cauchy problem for Boltzmann equations: Global existence and weak stability, Annals of Mathematics, 130 (1989), 321-366.
doi: 10.2307/1971423. |
[10] |
B. Düring, P. Markowich, J.-F. Pietschmann and M.-T. Wolfram,
Boltzmann and Fokker-Planck equations modelling opinion formation in the presence of strong leaders, Proceedings
of the Royal Society A: Mathematical, Physical and Engineering Science, (), rspa20090239.
|
[11] |
B. Düring, D. Matthes and G. Toscani, Kinetic equations modelling wealth redistribution: A comparison of approaches, Physical Review E, 78 (2008), 056103, 12pp.
doi: 10.1103/PhysRevE.78.056103. |
[12] |
D. Hilhorst and Y.-J. Kim,
Diffusive and inviscid traveling waves of the Fisher equation and nonuniqueness of wave speed, Applied Mathematics Letters, 60 (2016), 28-35.
doi: 10.1016/j.aml.2016.03.022. |
[13] |
J.-M. Lasry and P.-L. Lions,
Mean field games, Japanese Journal of Mathematics, 2 (2007), 229-260.
doi: 10.1007/s11537-007-0657-8. |
[14] |
R. E. Lucas, Ideas and growth, Economica, 76 (2009), 1-19, URL http://dx.doi.org/10.1111/j.1468-0335.2008.00748.x.
doi: 10.1111/j.1468-0335.2008.00748.x. |
[15] |
R. E. Lucas Jr and B. Moll, Knowledge growth and the allocation of time, Journal of Political Economy, 122. |
[16] |
E. G. Luttmer,
Eventually, Noise and Imitation Implies Balanced Growth, Technical report, Federal Reserve Bank of Minneapolis, 2012. |
[17] |
E. G. Luttmer,
Four Models of Knowledge Diffusion and Growth, Technical report, Federal Reserve Bank of Minneapolis, 2015. |
[18] |
V. Mahajan and R. A. Peterson,
Models for Innovation Diffusion, vol. 48, Sage, 1985. |
[19] |
P. Markowich,
Mathematical model for the diffusion of innovation, IEEE Trans. Sys., Man, and Cyber., 11 (1981), 504-509.
|
[20] |
L. Pareschi and G. Toscani, Wealth distribution and collective knowledge: A Boltzmann approach, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 372 (2014), 20130396, 15 pp, URL http://rsta.royalsocietypublishing.org/content/372/2028/20130396.abstract.
doi: 10.1098/rsta.2013.0396. |
[21] |
L. Pareschi and G. Toscani, Interacting Multiagent Systems: Kinetic Equations and Monte Carlo Methods, Oxford University Press, 2013, URL http://EconPapers.repec.org/RePEc:oxp:obooks:9780199655465. |
[22] |
M. Staley,
Growth and the diffusion of ideas, Journal of Mathematical Economics, 47 (2011), 470-478.
doi: 10.1016/j.jmateco.2011.06.006. |
[23] |
G. Toscani,
Kinetic models of opinion formation, Communications in mathematical sciences, 4 (2006), 481-496.
doi: 10.4310/CMS.2006.v4.n3.a1. |
[24] |
C. Villani,
A review of mathematical topics in collisional kinetic theory, Handbook of Mathematical Fluid Dynamics, 1 (2002), 71-305.
doi: 10.1016/S1874-5792(02)80004-0. |
show all references
References:
[1] |
Y. Achdou, F. J. Buera, J. -M. Lasry, P. -L. Lions and B. Moll, Partial differential equation models in macroeconomics, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 372 (2014), 20130397, 19 pp.
doi: 10.1098/rsta.2013.0397. |
[2] |
F. E. Alvarez, F. J. Buera and R. E. Lucas Jr,
Models of Idea Flows, Technical report, National Bureau of Economic Research, 2008. |
[3] |
L. Boltzmann,
Weitere Studien über das Wärmegleichgewicht unter Gasmolekulen, Wien. Ber, 66 (1872), 275-370.
doi: 10.1007/978-3-322-84986-1_3. |
[4] |
L. Boudin and F. Salvarani, A kinetic approach to the study of opinion formation, M2AN Math. Model. Numer. Anal., 43 (2009), 507-522, URL http://dx.doi.org/10.1051/m2an/2009004.
doi: 10.1051/m2an/2009004. |
[5] |
M. Burger, L. Caffarelli, P. Markowich and M.-T. Wolfram,
On a Boltzmann-type price formation model, Proc. R. Soc. A, 469 (2013), 20130126.
doi: 10.1098/rspa.2013.0126. |
[6] |
M. Burger, A. Lorz and M.-T. Wolfram,
On a Boltzmann mean field model for knowledge growth, SIAM J. Appl. Math., 76 (2016), 1799-1818.
doi: 10.1137/15M1018599. |
[7] | |
[8] |
P. Degond, J.-G. Liu and C. Ringhofer,
Large-scale dynamics of mean-field games driven by local Nash equilibria, Journal of Nonlinear Science, 24 (2014), 93-115.
doi: 10.1007/s00332-013-9185-2. |
[9] |
R. J. DiPerna and P.-L. Lions,
On the Cauchy problem for Boltzmann equations: Global existence and weak stability, Annals of Mathematics, 130 (1989), 321-366.
doi: 10.2307/1971423. |
[10] |
B. Düring, P. Markowich, J.-F. Pietschmann and M.-T. Wolfram,
Boltzmann and Fokker-Planck equations modelling opinion formation in the presence of strong leaders, Proceedings
of the Royal Society A: Mathematical, Physical and Engineering Science, (), rspa20090239.
|
[11] |
B. Düring, D. Matthes and G. Toscani, Kinetic equations modelling wealth redistribution: A comparison of approaches, Physical Review E, 78 (2008), 056103, 12pp.
doi: 10.1103/PhysRevE.78.056103. |
[12] |
D. Hilhorst and Y.-J. Kim,
Diffusive and inviscid traveling waves of the Fisher equation and nonuniqueness of wave speed, Applied Mathematics Letters, 60 (2016), 28-35.
doi: 10.1016/j.aml.2016.03.022. |
[13] |
J.-M. Lasry and P.-L. Lions,
Mean field games, Japanese Journal of Mathematics, 2 (2007), 229-260.
doi: 10.1007/s11537-007-0657-8. |
[14] |
R. E. Lucas, Ideas and growth, Economica, 76 (2009), 1-19, URL http://dx.doi.org/10.1111/j.1468-0335.2008.00748.x.
doi: 10.1111/j.1468-0335.2008.00748.x. |
[15] |
R. E. Lucas Jr and B. Moll, Knowledge growth and the allocation of time, Journal of Political Economy, 122. |
[16] |
E. G. Luttmer,
Eventually, Noise and Imitation Implies Balanced Growth, Technical report, Federal Reserve Bank of Minneapolis, 2012. |
[17] |
E. G. Luttmer,
Four Models of Knowledge Diffusion and Growth, Technical report, Federal Reserve Bank of Minneapolis, 2015. |
[18] |
V. Mahajan and R. A. Peterson,
Models for Innovation Diffusion, vol. 48, Sage, 1985. |
[19] |
P. Markowich,
Mathematical model for the diffusion of innovation, IEEE Trans. Sys., Man, and Cyber., 11 (1981), 504-509.
|
[20] |
L. Pareschi and G. Toscani, Wealth distribution and collective knowledge: A Boltzmann approach, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 372 (2014), 20130396, 15 pp, URL http://rsta.royalsocietypublishing.org/content/372/2028/20130396.abstract.
doi: 10.1098/rsta.2013.0396. |
[21] |
L. Pareschi and G. Toscani, Interacting Multiagent Systems: Kinetic Equations and Monte Carlo Methods, Oxford University Press, 2013, URL http://EconPapers.repec.org/RePEc:oxp:obooks:9780199655465. |
[22] |
M. Staley,
Growth and the diffusion of ideas, Journal of Mathematical Economics, 47 (2011), 470-478.
doi: 10.1016/j.jmateco.2011.06.006. |
[23] |
G. Toscani,
Kinetic models of opinion formation, Communications in mathematical sciences, 4 (2006), 481-496.
doi: 10.4310/CMS.2006.v4.n3.a1. |
[24] |
C. Villani,
A review of mathematical topics in collisional kinetic theory, Handbook of Mathematical Fluid Dynamics, 1 (2002), 71-305.
doi: 10.1016/S1874-5792(02)80004-0. |



[1] |
Kai Zhao, Wei Cheng. On the vanishing contact structure for viscosity solutions of contact type Hamilton-Jacobi equations I: Cauchy problem. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4345-4358. doi: 10.3934/dcds.2019176 |
[2] |
Olga Bernardi, Franco Cardin. On $C^0$-variational solutions for Hamilton-Jacobi equations. Discrete and Continuous Dynamical Systems, 2011, 31 (2) : 385-406. doi: 10.3934/dcds.2011.31.385 |
[3] |
Gawtum Namah, Mohammed Sbihi. A notion of extremal solutions for time periodic Hamilton-Jacobi equations. Discrete and Continuous Dynamical Systems - B, 2010, 13 (3) : 647-664. doi: 10.3934/dcdsb.2010.13.647 |
[4] |
Gui-Qiang Chen, Bo Su. Discontinuous solutions for Hamilton-Jacobi equations: Uniqueness and regularity. Discrete and Continuous Dynamical Systems, 2003, 9 (1) : 167-192. doi: 10.3934/dcds.2003.9.167 |
[5] |
David McCaffrey. A representational formula for variational solutions to Hamilton-Jacobi equations. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1205-1215. doi: 10.3934/cpaa.2012.11.1205 |
[6] |
Mihai Bostan, Gawtum Namah. Time periodic viscosity solutions of Hamilton-Jacobi equations. Communications on Pure and Applied Analysis, 2007, 6 (2) : 389-410. doi: 10.3934/cpaa.2007.6.389 |
[7] |
Olga Bernardi, Franco Cardin. Minimax and viscosity solutions of Hamilton-Jacobi equations in the convex case. Communications on Pure and Applied Analysis, 2006, 5 (4) : 793-812. doi: 10.3934/cpaa.2006.5.793 |
[8] |
Kaizhi Wang, Jun Yan. Lipschitz dependence of viscosity solutions of Hamilton-Jacobi equations with respect to the parameter. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1649-1659. doi: 10.3934/dcds.2016.36.1649 |
[9] |
Claudio Marchi. On the convergence of singular perturbations of Hamilton-Jacobi equations. Communications on Pure and Applied Analysis, 2010, 9 (5) : 1363-1377. doi: 10.3934/cpaa.2010.9.1363 |
[10] |
Isabeau Birindelli, J. Wigniolle. Homogenization of Hamilton-Jacobi equations in the Heisenberg group. Communications on Pure and Applied Analysis, 2003, 2 (4) : 461-479. doi: 10.3934/cpaa.2003.2.461 |
[11] |
Gonzalo Dávila. Comparison principles for nonlocal Hamilton-Jacobi equations. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022061 |
[12] |
Thi Tuyen Nguyen. Large time behavior of solutions of local and nonlocal nondegenerate Hamilton-Jacobi equations with Ornstein-Uhlenbeck operator. Communications on Pure and Applied Analysis, 2019, 18 (3) : 999-1021. doi: 10.3934/cpaa.2019049 |
[13] |
Xia Li. Long-time asymptotic solutions of convex hamilton-jacobi equations depending on unknown functions. Discrete and Continuous Dynamical Systems, 2017, 37 (10) : 5151-5162. doi: 10.3934/dcds.2017223 |
[14] |
Nadia Loy, Andrea Tosin. Boltzmann-type equations for multi-agent systems with label switching. Kinetic and Related Models, 2021, 14 (5) : 867-894. doi: 10.3934/krm.2021027 |
[15] |
Laura Caravenna, Annalisa Cesaroni, Hung Vinh Tran. Preface: Recent developments related to conservation laws and Hamilton-Jacobi equations. Discrete and Continuous Dynamical Systems - S, 2018, 11 (5) : i-iii. doi: 10.3934/dcdss.201805i |
[16] |
Fabio Camilli, Paola Loreti, Naoki Yamada. Systems of convex Hamilton-Jacobi equations with implicit obstacles and the obstacle problem. Communications on Pure and Applied Analysis, 2009, 8 (4) : 1291-1302. doi: 10.3934/cpaa.2009.8.1291 |
[17] |
Yasuhiro Fujita, Katsushi Ohmori. Inequalities and the Aubry-Mather theory of Hamilton-Jacobi equations. Communications on Pure and Applied Analysis, 2009, 8 (2) : 683-688. doi: 10.3934/cpaa.2009.8.683 |
[18] |
Emeric Bouin. A Hamilton-Jacobi approach for front propagation in kinetic equations. Kinetic and Related Models, 2015, 8 (2) : 255-280. doi: 10.3934/krm.2015.8.255 |
[19] |
Antonio Avantaggiati, Paola Loreti, Cristina Pocci. Mixed norms, functional Inequalities, and Hamilton-Jacobi equations. Discrete and Continuous Dynamical Systems - B, 2014, 19 (7) : 1855-1867. doi: 10.3934/dcdsb.2014.19.1855 |
[20] |
Martino Bardi, Yoshikazu Giga. Right accessibility of semicontinuous initial data for Hamilton-Jacobi equations. Communications on Pure and Applied Analysis, 2003, 2 (4) : 447-459. doi: 10.3934/cpaa.2003.2.447 |
2020 Impact Factor: 1.432
Tools
Metrics
Other articles
by authors
[Back to Top]