In this paper we study balanced growth path solutions of a Boltzmann mean field game model proposed by Lucas and Moll [
Citation: |
[1] | Y. Achdou, F. J. Buera, J. -M. Lasry, P. -L. Lions and B. Moll, Partial differential equation models in macroeconomics, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 372 (2014), 20130397, 19 pp. doi: 10.1098/rsta.2013.0397. |
[2] | F. E. Alvarez, F. J. Buera and R. E. Lucas Jr, Models of Idea Flows, Technical report, National Bureau of Economic Research, 2008. |
[3] | L. Boltzmann, Weitere Studien über das Wärmegleichgewicht unter Gasmolekulen, Wien. Ber, 66 (1872), 275-370. doi: 10.1007/978-3-322-84986-1_3. |
[4] | L. Boudin and F. Salvarani, A kinetic approach to the study of opinion formation, M2AN Math. Model. Numer. Anal., 43 (2009), 507-522, URL http://dx.doi.org/10.1051/m2an/2009004. doi: 10.1051/m2an/2009004. |
[5] | M. Burger, L. Caffarelli, P. Markowich and M.-T. Wolfram, On a Boltzmann-type price formation model, Proc. R. Soc. A, 469 (2013), 20130126. doi: 10.1098/rspa.2013.0126. |
[6] | M. Burger, A. Lorz and M.-T. Wolfram, On a Boltzmann mean field model for knowledge growth, SIAM J. Appl. Math., 76 (2016), 1799-1818. doi: 10.1137/15M1018599. |
[7] | C. Cercignani, The Boltzmann Equation, Springer, 1988. |
[8] | P. Degond, J.-G. Liu and C. Ringhofer, Large-scale dynamics of mean-field games driven by local Nash equilibria, Journal of Nonlinear Science, 24 (2014), 93-115. doi: 10.1007/s00332-013-9185-2. |
[9] | R. J. DiPerna and P.-L. Lions, On the Cauchy problem for Boltzmann equations: Global existence and weak stability, Annals of Mathematics, 130 (1989), 321-366. doi: 10.2307/1971423. |
[10] | B. Düring, P. Markowich, J.-F. Pietschmann and M.-T. Wolfram, Boltzmann and Fokker-Planck equations modelling opinion formation in the presence of strong leaders, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, (), rspa20090239. |
[11] | B. Düring, D. Matthes and G. Toscani, Kinetic equations modelling wealth redistribution: A comparison of approaches, Physical Review E, 78 (2008), 056103, 12pp. doi: 10.1103/PhysRevE.78.056103. |
[12] | D. Hilhorst and Y.-J. Kim, Diffusive and inviscid traveling waves of the Fisher equation and nonuniqueness of wave speed, Applied Mathematics Letters, 60 (2016), 28-35. doi: 10.1016/j.aml.2016.03.022. |
[13] | J.-M. Lasry and P.-L. Lions, Mean field games, Japanese Journal of Mathematics, 2 (2007), 229-260. doi: 10.1007/s11537-007-0657-8. |
[14] | R. E. Lucas, Ideas and growth, Economica, 76 (2009), 1-19, URL http://dx.doi.org/10.1111/j.1468-0335.2008.00748.x. doi: 10.1111/j.1468-0335.2008.00748.x. |
[15] | R. E. Lucas Jr and B. Moll, Knowledge growth and the allocation of time, Journal of Political Economy, 122. |
[16] | E. G. Luttmer, Eventually, Noise and Imitation Implies Balanced Growth, Technical report, Federal Reserve Bank of Minneapolis, 2012. |
[17] | E. G. Luttmer, Four Models of Knowledge Diffusion and Growth, Technical report, Federal Reserve Bank of Minneapolis, 2015. |
[18] | V. Mahajan and R. A. Peterson, Models for Innovation Diffusion, vol. 48, Sage, 1985. |
[19] | P. Markowich, Mathematical model for the diffusion of innovation, IEEE Trans. Sys., Man, and Cyber., 11 (1981), 504-509. |
[20] | L. Pareschi and G. Toscani, Wealth distribution and collective knowledge: A Boltzmann approach, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 372 (2014), 20130396, 15 pp, URL http://rsta.royalsocietypublishing.org/content/372/2028/20130396.abstract. doi: 10.1098/rsta.2013.0396. |
[21] | L. Pareschi and G. Toscani, Interacting Multiagent Systems: Kinetic Equations and Monte Carlo Methods, Oxford University Press, 2013, URL http://EconPapers.repec.org/RePEc:oxp:obooks:9780199655465. |
[22] | M. Staley, Growth and the diffusion of ideas, Journal of Mathematical Economics, 47 (2011), 470-478. doi: 10.1016/j.jmateco.2011.06.006. |
[23] | G. Toscani, et al., Kinetic models of opinion formation, Communications in mathematical sciences, 4 (2006), 481-496. doi: 10.4310/CMS.2006.v4.n3.a1. |
[24] | C. Villani, A review of mathematical topics in collisional kinetic theory, Handbook of Mathematical Fluid Dynamics, 1 (2002), 71-305. doi: 10.1016/S1874-5792(02)80004-0. |