Despite their wide presence in various models in the study of collective behaviors, explicit swarming patterns are difficult to obtain. In this paper, special stationary solutions of the aggregation equation with power-law kernelsare constructed by inverting Fredholm integral operators or byemploying certain integral identities. These solutions are expected tobe the global energy stable equilibria and to characterize the generic behaviorsof stationary solutions for more general interactions.
Citation: |
[1] |
M. J. Ablowitz and A. S. Fokas,
Complex Variables: Introduction and Applications, Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, second edition, 2003.
doi: 10.1017/CBO9780511791246.![]() ![]() ![]() |
[2] |
G. Albi, D. Balagué, J. A. Carrillo and J. von Brecht, Stability analysis of flock and mill rings for second order models in swarming, SIAM J. Appl. Math., 74 (2014), 794-818.
doi: 10.1137/13091779X.![]() ![]() ![]() |
[3] |
D. Balagué, J. A. Carrillo, T. Laurent and G. Raoul, Dimensionality of local minimizers of the interaction energy, Arch. Ration. Mech. Anal., 209 (2013), 1055-1088.
doi: 10.1007/s00205-013-0644-6.![]() ![]() ![]() |
[4] |
D. Balagué, J. A. Carrillo, T. Laurent and G. Raoul, Nonlocal interactions by repulsive-attractive potentials: Radial ins/stability, Phys. D, 260 (2013), 5-25.
doi: 10.1016/j.physd.2012.10.002.![]() ![]() ![]() |
[5] |
A. Berman and R. J. Plemmons,
Nonnegative Matrices in the Mathematical Sciences, volume 9 of Classics in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1994. Revised reprint of the 1979 original.
doi: 10.1137/1.9781611971262.![]() ![]() ![]() |
[6] |
A. J. Bernoff and C. M. Topaz, A primer of swarm equilibria, SIAM J. Appl. Dyn. Syst., 10 (2011), 212-250.
doi: 10.1137/100804504.![]() ![]() ![]() |
[7] |
A. L. Bertozzi, T. Kolokolnikov, H. Sun, D. Uminsky and J. von Brecht, Ring patterns and their bifurcations in a nonlocal model of biological swarms, Commun. Math. Sci., 13 (2015), 955-985.
doi: 10.4310/CMS.2015.v13.n4.a6.![]() ![]() ![]() |
[8] |
M. Bessemoulin-Chatard and F. Filbet, A finite volume scheme for nonlinear degenerate parabolic equations, SIAM J. Sci. Comput., 34 (2012), B559-B583.
doi: 10.1137/110853807.![]() ![]() ![]() |
[9] |
J. A. Cañizo, J. A. Carrillo and F. S. Patacchini, Existence of compactly supported global minimisers for the interaction energy, Arch. Ration. Mech. Anal., 217 (2015), 1197-1217.
doi: 10.1007/s00205-015-0852-3.![]() ![]() ![]() |
[10] |
J. A. Carrillo, A. Chertock and Y. Huang, A finite-volume method for nonlinear nonlocal equations with a gradient flow structure, Commun. Comput. Phys., 17 (2015), 233-258.
doi: 10.4208/cicp.160214.010814a.![]() ![]() ![]() |
[11] |
J. A. Carrillo, M. Chipot and Y. Huang, On global minimizers of repulsive-attractive power-law interaction energies,
Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. , 372(2014), 20130399, 13pp.
doi: 10.1098/rsta.2013.0399.![]() ![]() ![]() |
[12] |
J. A. Carrillo, Y. -P. Choi and M. Hauray, The derivation of swarming models: mean-field limit and Wasserstein distances, In Collective dynamics from bacteria to crowds, volume 553 of CISM Courses and Lectures, pages 1-46. Springer, Vienna, 2014.
doi: 10.1007/978-3-7091-1785-9_1.![]() ![]() ![]() |
[13] |
J. A. Carrillo, M. G. Delgadino and A. Mellet, Regularity of local minimizers of the interaction energy via obstacle problems, Comm. Math. Phys., 343 (2016), 747-781.
doi: 10.1007/s00220-016-2598-7.![]() ![]() ![]() |
[14] |
J. A. Carrillo, M. DiFrancesco, A. Figalli, T. Laurent and D. Slepčev, Global-in-time weak measure solutions and finite-time aggregation for nonlocal interaction equations, Duke Math. J., 156 (2011), 229-271.
doi: 10.1215/00127094-2010-211.![]() ![]() ![]() |
[15] |
J. A. Carrillo, M. R. D'Orsogna and V. Panferov, Double milling in self-propelled swarms from kinetic theory, Kinetic and Related Models, 2 (2009), 363-378.
doi: 10.3934/krm.2009.2.363.![]() ![]() ![]() |
[16] |
J. A. Carrillo, M. Fornasier, G. Toscani and F. Vecil, Particle, kinetic, and hydrodynamic models of swarming, In Mathematical modeling of collective behavior in socio-economic and life sciences, Model. Simul. Sci. Eng. Technol., pages 297-336. Birkhäuser Boston, Inc., Boston, MA, 2010.
doi: 10.1007/978-0-8176-4946-3_12.![]() ![]() ![]() |
[17] |
J. A. Carrillo, Y. Huang and S. Martin, Explicit flock solutions for Quasi-Morse potentials, European J. Appl. Math., 25 (2014), 553-578.
doi: 10.1017/S0956792514000126.![]() ![]() ![]() |
[18] |
J. A. Carrillo, Y. Huang and S. Martin, Nonlinear stability of flock solutions in second-order swarming models, Nonlinear Anal. Real World Appl., 17 (2014), 332-343.
doi: 10.1016/j.nonrwa.2013.12.008.![]() ![]() ![]() |
[19] |
J. A. Carrillo, A. Klar, S. Martin and S. Tiwari, Self-propelled interacting particle systems with roosting force, Math. Models Methods Appl. Sci., 20 (2010), 1533-1552.
doi: 10.1142/S0218202510004684.![]() ![]() ![]() |
[20] |
J. A. Carrillo, A. Klar and A. Roth, Single to double mill small noise transition via semi-lagrangian finite volume methods, Comm. Math. Sci., 14 (2016), 1111-1136.
doi: 10.4310/CMS.2016.v14.n4.a12.![]() ![]() ![]() |
[21] |
J. A. Carrillo, S. Martin and V. Panferov, A new interaction potential for swarming models, Phys. D, 260 (2013), 112-126.
doi: 10.1016/j.physd.2013.02.004.![]() ![]() ![]() |
[22] |
J. A. Carrillo, R. J. McCann and C. Villani, Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates, Rev. Mat. Iberoamericana, 19 (2003), 971-1018.
doi: 10.4171/RMI/376.![]() ![]() ![]() |
[23] |
J. A. Carrillo and J. L. Vázquez, Some free boundary problems involving non-local diffusion and aggregation,
Philos. Trans. A, 373(2015), 20140275, 16pp.
doi: 10.1098/rsta.2014.0275.![]() ![]() ![]() |
[24] |
Y.-L. Chuang, M. R. D'Orsogna, D. Marthaler, A. L. Bertozzi and L. S. Chayes, State transitions and the continuum limit for a 2D interacting, self-propelled particle system, Phys. D, 232 (2007), 33-47.
doi: 10.1016/j.physd.2007.05.007.![]() ![]() ![]() |
[25] |
M. R. D'Orsogna, Y.-L. Chuang, A. L. Bertozzi and L. S. Chayes, Self-propelled particles with soft-core interactions: Patterns, stability, and collapse, Physical review letters, 96 (2006), 104302.
![]() |
[26] |
R. Estrada and R. P. Kanwal,
Singular Integral Equations, Birkhäuser Boston, Inc., Boston, MA, 2000.
doi: 10.1007/978-1-4612-1382-6.![]() ![]() ![]() |
[27] |
K. Fellner and G. Raoul, Stable stationary states of non-local interaction equations, Math. Models Methods Appl. Sci., 20 (2010), 2267-2291.
doi: 10.1142/S0218202510004921.![]() ![]() ![]() |
[28] |
K. Fellner and G. Raoul, Stability of stationary states of non-local equations with singular interaction potentials, Math. Comput. Modelling, 53 (2011), 1436-1450.
doi: 10.1016/j.mcm.2010.03.021.![]() ![]() ![]() |
[29] |
R. C. Fetecau and Y. Huang, Equilibria of biological aggregations with nonlocal repulsive-attractive interactions, Phys. D, 260 (2013), 49-64.
doi: 10.1016/j.physd.2012.11.004.![]() ![]() ![]() |
[30] |
R. C. Fetecau, Y. Huang and T. Kolokolnikov, Swarm dynamics and equilibria for a nonlocal aggregation model, Nonlinearity, 24 (2011), 2681-2716.
doi: 10.1088/0951-7715/24/10/002.![]() ![]() ![]() |
[31] |
D. D. Holm and V. Putkaradze, Formation of clumps and patches in self-aggregation of finite-size particles, Phys. D, 220 (2006), 183-196.
doi: 10.1016/j.physd.2006.07.010.![]() ![]() ![]() |
[32] |
Y. Huang, Explicit Barenblatt profiles for fractional porous medium equations, Bull. Lond. Math. Soc., 46 (2014), 857-869.
doi: 10.1112/blms/bdu045.![]() ![]() ![]() |
[33] |
B. D. Hughes and K. Fellner, Continuum models of cohesive stochastic swarms: The effect of motility on aggregation patterns, Phys. D, 260 (2013), 26-48.
doi: 10.1016/j.physd.2013.05.001.![]() ![]() ![]() |
[34] |
T. Kolokolnikov, J. A. Carrillo, A. Bertozzi, R. Fetecau and M. Lewis, Emergent behaviour in multi-particle systems with non-local interactions [Editorial], Phys. D, 260 (2013), 1-4.
doi: 10.1016/j.physd.2013.06.011.![]() ![]() ![]() |
[35] |
T. Kolokolnikov, H. Sun, D. Uminsky and A. L. Bertozzi, Stability of ring patterns arising from two-dimensional particle interactions, Phys. Rev. E, 84 (2011), 015203.
doi: 10.1103/PhysRevE.84.015203.![]() ![]() |
[36] |
N. S. Landkof,
Foundations of Modern Potential Theory, Springer-Verlag, New York-Heidelberg, 1972. Die Grundlehren der mathematischen Wissenschaften, Band 180.
![]() ![]() |
[37] |
A. J. Leverentz, C. M. Topaz and A. J. Bernoff, Asymptotic dynamics of attractive-repulsive swarms, SIAM J. Appl. Dyn. Syst., 8 (2009), 880-908.
doi: 10.1137/090749037.![]() ![]() ![]() |
[38] |
H. Levine, W.-J. Rappel and I. Cohen, Self-organization in systems of self-propelled particles, Physical Review E, 63 (2000), 017101.
doi: 10.1103/PhysRevE.63.017101.![]() ![]() |
[39] |
A. Mogilner and L. Edelstein-Keshet, A non-local model for a swarm, Journal of Mathematical Biology, 38 (1999), 534-570.
doi: 10.1007/s002850050158.![]() ![]() ![]() |
[40] |
L. Ryan, Analysis of swarm behavior in two dimensions, 2012. HMC Senior Theses.
![]() |
[41] |
R. Simione, D. Slepčev and I. Topaloglu, Existence of ground states of nonlocal-interaction energies, J. Stat. Phys., 159 (2015), 972-986.
doi: 10.1007/s10955-015-1215-z.![]() ![]() ![]() |
[42] |
C. Villani,
Topics in Optimal Transportation, volume 58 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2003.
doi: 10.1007/b12016.![]() ![]() ![]() |