March  2017, 10(1): 171-192. doi: 10.3934/krm.2017007

Explicit equilibrium solutions for the aggregation equation with power-law potentials

1. 

Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom

2. 

School of Mathematics, The University of Manchester, Manchester M13 9PL, United Kingdom

Received  February 2016 Revised  June 2016 Published  November 2016

Despite their wide presence in various models in the study of collective behaviors, explicit swarming patterns are difficult to obtain. In this paper, special stationary solutions of the aggregation equation with power-law kernelsare constructed by inverting Fredholm integral operators or byemploying certain integral identities. These solutions are expected tobe the global energy stable equilibria and to characterize the generic behaviorsof stationary solutions for more general interactions.

Citation: José A. Carrillo, Yanghong Huang. Explicit equilibrium solutions for the aggregation equation with power-law potentials. Kinetic & Related Models, 2017, 10 (1) : 171-192. doi: 10.3934/krm.2017007
References:
[1]

M. J. Ablowitz and A. S. Fokas, Complex Variables: Introduction and Applications, Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, second edition, 2003. doi: 10.1017/CBO9780511791246. Google Scholar

[2]

G. AlbiD. BalaguéJ. A. Carrillo and J. von Brecht, Stability analysis of flock and mill rings for second order models in swarming, SIAM J. Appl. Math., 74 (2014), 794-818. doi: 10.1137/13091779X. Google Scholar

[3]

D. BalaguéJ. A. CarrilloT. Laurent and G. Raoul, Dimensionality of local minimizers of the interaction energy, Arch. Ration. Mech. Anal., 209 (2013), 1055-1088. doi: 10.1007/s00205-013-0644-6. Google Scholar

[4]

D. BalaguéJ. A. CarrilloT. Laurent and G. Raoul, Nonlocal interactions by repulsive-attractive potentials: Radial ins/stability, Phys. D, 260 (2013), 5-25. doi: 10.1016/j.physd.2012.10.002. Google Scholar

[5]

A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, volume 9 of Classics in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1994. Revised reprint of the 1979 original. doi: 10.1137/1.9781611971262. Google Scholar

[6]

A. J. Bernoff and C. M. Topaz, A primer of swarm equilibria, SIAM J. Appl. Dyn. Syst., 10 (2011), 212-250. doi: 10.1137/100804504. Google Scholar

[7]

A. L. BertozziT. KolokolnikovH. SunD. Uminsky and J. von Brecht, Ring patterns and their bifurcations in a nonlocal model of biological swarms, Commun. Math. Sci., 13 (2015), 955-985. doi: 10.4310/CMS.2015.v13.n4.a6. Google Scholar

[8]

M. Bessemoulin-Chatard and F. Filbet, A finite volume scheme for nonlinear degenerate parabolic equations, SIAM J. Sci. Comput., 34 (2012), B559-B583. doi: 10.1137/110853807. Google Scholar

[9]

J. A. CañizoJ. A. Carrillo and F. S. Patacchini, Existence of compactly supported global minimisers for the interaction energy, Arch. Ration. Mech. Anal., 217 (2015), 1197-1217. doi: 10.1007/s00205-015-0852-3. Google Scholar

[10]

J. A. CarrilloA. Chertock and Y. Huang, A finite-volume method for nonlinear nonlocal equations with a gradient flow structure, Commun. Comput. Phys., 17 (2015), 233-258. doi: 10.4208/cicp.160214.010814a. Google Scholar

[11]

J. A. Carrillo, M. Chipot and Y. Huang, On global minimizers of repulsive-attractive power-law interaction energies, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. , 372(2014), 20130399, 13pp. doi: 10.1098/rsta.2013.0399. Google Scholar

[12]

J. A. Carrillo, Y. -P. Choi and M. Hauray, The derivation of swarming models: mean-field limit and Wasserstein distances, In Collective dynamics from bacteria to crowds, volume 553 of CISM Courses and Lectures, pages 1-46. Springer, Vienna, 2014. doi: 10.1007/978-3-7091-1785-9_1. Google Scholar

[13]

J. A. CarrilloM. G. Delgadino and A. Mellet, Regularity of local minimizers of the interaction energy via obstacle problems, Comm. Math. Phys., 343 (2016), 747-781. doi: 10.1007/s00220-016-2598-7. Google Scholar

[14]

J. A. CarrilloM. DiFrancescoA. FigalliT. Laurent and D. Slepčev, Global-in-time weak measure solutions and finite-time aggregation for nonlocal interaction equations, Duke Math. J., 156 (2011), 229-271. doi: 10.1215/00127094-2010-211. Google Scholar

[15]

J. A. CarrilloM. R. D'Orsogna and V. Panferov, Double milling in self-propelled swarms from kinetic theory, Kinetic and Related Models, 2 (2009), 363-378. doi: 10.3934/krm.2009.2.363. Google Scholar

[16]

J. A. Carrillo, M. Fornasier, G. Toscani and F. Vecil, Particle, kinetic, and hydrodynamic models of swarming, In Mathematical modeling of collective behavior in socio-economic and life sciences, Model. Simul. Sci. Eng. Technol., pages 297-336. Birkhäuser Boston, Inc., Boston, MA, 2010. doi: 10.1007/978-0-8176-4946-3_12. Google Scholar

[17]

J. A. CarrilloY. Huang and S. Martin, Explicit flock solutions for Quasi-Morse potentials, European J. Appl. Math., 25 (2014), 553-578. doi: 10.1017/S0956792514000126. Google Scholar

[18]

J. A. CarrilloY. Huang and S. Martin, Nonlinear stability of flock solutions in second-order swarming models, Nonlinear Anal. Real World Appl., 17 (2014), 332-343. doi: 10.1016/j.nonrwa.2013.12.008. Google Scholar

[19]

J. A. CarrilloA. KlarS. Martin and S. Tiwari, Self-propelled interacting particle systems with roosting force, Math. Models Methods Appl. Sci., 20 (2010), 1533-1552. doi: 10.1142/S0218202510004684. Google Scholar

[20]

J. A. CarrilloA. Klar and A. Roth, Single to double mill small noise transition via semi-lagrangian finite volume methods, Comm. Math. Sci., 14 (2016), 1111-1136. doi: 10.4310/CMS.2016.v14.n4.a12. Google Scholar

[21]

J. A. CarrilloS. Martin and V. Panferov, A new interaction potential for swarming models, Phys. D, 260 (2013), 112-126. doi: 10.1016/j.physd.2013.02.004. Google Scholar

[22]

J. A. CarrilloR. J. McCann and C. Villani, Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates, Rev. Mat. Iberoamericana, 19 (2003), 971-1018. doi: 10.4171/RMI/376. Google Scholar

[23]

J. A. Carrillo and J. L. Vázquez, Some free boundary problems involving non-local diffusion and aggregation, Philos. Trans. A, 373(2015), 20140275, 16pp. doi: 10.1098/rsta.2014.0275. Google Scholar

[24]

Y.-L. ChuangM. R. D'OrsognaD. MarthalerA. L. Bertozzi and L. S. Chayes, State transitions and the continuum limit for a 2D interacting, self-propelled particle system, Phys. D, 232 (2007), 33-47. doi: 10.1016/j.physd.2007.05.007. Google Scholar

[25]

M. R. D'OrsognaY.-L. ChuangA. L. Bertozzi and L. S. Chayes, Self-propelled particles with soft-core interactions: Patterns, stability, and collapse, Physical review letters, 96 (2006), 104302. Google Scholar

[26]

R. Estrada and R. P. Kanwal, Singular Integral Equations, Birkhäuser Boston, Inc., Boston, MA, 2000. doi: 10.1007/978-1-4612-1382-6. Google Scholar

[27]

K. Fellner and G. Raoul, Stable stationary states of non-local interaction equations, Math. Models Methods Appl. Sci., 20 (2010), 2267-2291. doi: 10.1142/S0218202510004921. Google Scholar

[28]

K. Fellner and G. Raoul, Stability of stationary states of non-local equations with singular interaction potentials, Math. Comput. Modelling, 53 (2011), 1436-1450. doi: 10.1016/j.mcm.2010.03.021. Google Scholar

[29]

R. C. Fetecau and Y. Huang, Equilibria of biological aggregations with nonlocal repulsive-attractive interactions, Phys. D, 260 (2013), 49-64. doi: 10.1016/j.physd.2012.11.004. Google Scholar

[30]

R. C. FetecauY. Huang and T. Kolokolnikov, Swarm dynamics and equilibria for a nonlocal aggregation model, Nonlinearity, 24 (2011), 2681-2716. doi: 10.1088/0951-7715/24/10/002. Google Scholar

[31]

D. D. Holm and V. Putkaradze, Formation of clumps and patches in self-aggregation of finite-size particles, Phys. D, 220 (2006), 183-196. doi: 10.1016/j.physd.2006.07.010. Google Scholar

[32]

Y. Huang, Explicit Barenblatt profiles for fractional porous medium equations, Bull. Lond. Math. Soc., 46 (2014), 857-869. doi: 10.1112/blms/bdu045. Google Scholar

[33]

B. D. Hughes and K. Fellner, Continuum models of cohesive stochastic swarms: The effect of motility on aggregation patterns, Phys. D, 260 (2013), 26-48. doi: 10.1016/j.physd.2013.05.001. Google Scholar

[34]

T. KolokolnikovJ. A. CarrilloA. BertozziR. Fetecau and M. Lewis, Emergent behaviour in multi-particle systems with non-local interactions [Editorial], Phys. D, 260 (2013), 1-4. doi: 10.1016/j.physd.2013.06.011. Google Scholar

[35]

T. KolokolnikovH. SunD. Uminsky and A. L. Bertozzi, Stability of ring patterns arising from two-dimensional particle interactions, Phys. Rev. E, 84 (2011), 015203. doi: 10.1103/PhysRevE.84.015203. Google Scholar

[36]

N. S. Landkof, Foundations of Modern Potential Theory, Springer-Verlag, New York-Heidelberg, 1972. Die Grundlehren der mathematischen Wissenschaften, Band 180. Google Scholar

[37]

A. J. LeverentzC. M. Topaz and A. J. Bernoff, Asymptotic dynamics of attractive-repulsive swarms, SIAM J. Appl. Dyn. Syst., 8 (2009), 880-908. doi: 10.1137/090749037. Google Scholar

[38]

H. LevineW.-J. Rappel and I. Cohen, Self-organization in systems of self-propelled particles, Physical Review E, 63 (2000), 017101. doi: 10.1103/PhysRevE.63.017101. Google Scholar

[39]

A. Mogilner and L. Edelstein-Keshet, A non-local model for a swarm, Journal of Mathematical Biology, 38 (1999), 534-570. doi: 10.1007/s002850050158. Google Scholar

[40]

L. Ryan, Analysis of swarm behavior in two dimensions, 2012. HMC Senior Theses.Google Scholar

[41]

R. SimioneD. Slepčev and I. Topaloglu, Existence of ground states of nonlocal-interaction energies, J. Stat. Phys., 159 (2015), 972-986. doi: 10.1007/s10955-015-1215-z. Google Scholar

[42]

C. Villani, Topics in Optimal Transportation, volume 58 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2003. doi: 10.1007/b12016. Google Scholar

show all references

References:
[1]

M. J. Ablowitz and A. S. Fokas, Complex Variables: Introduction and Applications, Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, second edition, 2003. doi: 10.1017/CBO9780511791246. Google Scholar

[2]

G. AlbiD. BalaguéJ. A. Carrillo and J. von Brecht, Stability analysis of flock and mill rings for second order models in swarming, SIAM J. Appl. Math., 74 (2014), 794-818. doi: 10.1137/13091779X. Google Scholar

[3]

D. BalaguéJ. A. CarrilloT. Laurent and G. Raoul, Dimensionality of local minimizers of the interaction energy, Arch. Ration. Mech. Anal., 209 (2013), 1055-1088. doi: 10.1007/s00205-013-0644-6. Google Scholar

[4]

D. BalaguéJ. A. CarrilloT. Laurent and G. Raoul, Nonlocal interactions by repulsive-attractive potentials: Radial ins/stability, Phys. D, 260 (2013), 5-25. doi: 10.1016/j.physd.2012.10.002. Google Scholar

[5]

A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, volume 9 of Classics in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1994. Revised reprint of the 1979 original. doi: 10.1137/1.9781611971262. Google Scholar

[6]

A. J. Bernoff and C. M. Topaz, A primer of swarm equilibria, SIAM J. Appl. Dyn. Syst., 10 (2011), 212-250. doi: 10.1137/100804504. Google Scholar

[7]

A. L. BertozziT. KolokolnikovH. SunD. Uminsky and J. von Brecht, Ring patterns and their bifurcations in a nonlocal model of biological swarms, Commun. Math. Sci., 13 (2015), 955-985. doi: 10.4310/CMS.2015.v13.n4.a6. Google Scholar

[8]

M. Bessemoulin-Chatard and F. Filbet, A finite volume scheme for nonlinear degenerate parabolic equations, SIAM J. Sci. Comput., 34 (2012), B559-B583. doi: 10.1137/110853807. Google Scholar

[9]

J. A. CañizoJ. A. Carrillo and F. S. Patacchini, Existence of compactly supported global minimisers for the interaction energy, Arch. Ration. Mech. Anal., 217 (2015), 1197-1217. doi: 10.1007/s00205-015-0852-3. Google Scholar

[10]

J. A. CarrilloA. Chertock and Y. Huang, A finite-volume method for nonlinear nonlocal equations with a gradient flow structure, Commun. Comput. Phys., 17 (2015), 233-258. doi: 10.4208/cicp.160214.010814a. Google Scholar

[11]

J. A. Carrillo, M. Chipot and Y. Huang, On global minimizers of repulsive-attractive power-law interaction energies, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. , 372(2014), 20130399, 13pp. doi: 10.1098/rsta.2013.0399. Google Scholar

[12]

J. A. Carrillo, Y. -P. Choi and M. Hauray, The derivation of swarming models: mean-field limit and Wasserstein distances, In Collective dynamics from bacteria to crowds, volume 553 of CISM Courses and Lectures, pages 1-46. Springer, Vienna, 2014. doi: 10.1007/978-3-7091-1785-9_1. Google Scholar

[13]

J. A. CarrilloM. G. Delgadino and A. Mellet, Regularity of local minimizers of the interaction energy via obstacle problems, Comm. Math. Phys., 343 (2016), 747-781. doi: 10.1007/s00220-016-2598-7. Google Scholar

[14]

J. A. CarrilloM. DiFrancescoA. FigalliT. Laurent and D. Slepčev, Global-in-time weak measure solutions and finite-time aggregation for nonlocal interaction equations, Duke Math. J., 156 (2011), 229-271. doi: 10.1215/00127094-2010-211. Google Scholar

[15]

J. A. CarrilloM. R. D'Orsogna and V. Panferov, Double milling in self-propelled swarms from kinetic theory, Kinetic and Related Models, 2 (2009), 363-378. doi: 10.3934/krm.2009.2.363. Google Scholar

[16]

J. A. Carrillo, M. Fornasier, G. Toscani and F. Vecil, Particle, kinetic, and hydrodynamic models of swarming, In Mathematical modeling of collective behavior in socio-economic and life sciences, Model. Simul. Sci. Eng. Technol., pages 297-336. Birkhäuser Boston, Inc., Boston, MA, 2010. doi: 10.1007/978-0-8176-4946-3_12. Google Scholar

[17]

J. A. CarrilloY. Huang and S. Martin, Explicit flock solutions for Quasi-Morse potentials, European J. Appl. Math., 25 (2014), 553-578. doi: 10.1017/S0956792514000126. Google Scholar

[18]

J. A. CarrilloY. Huang and S. Martin, Nonlinear stability of flock solutions in second-order swarming models, Nonlinear Anal. Real World Appl., 17 (2014), 332-343. doi: 10.1016/j.nonrwa.2013.12.008. Google Scholar

[19]

J. A. CarrilloA. KlarS. Martin and S. Tiwari, Self-propelled interacting particle systems with roosting force, Math. Models Methods Appl. Sci., 20 (2010), 1533-1552. doi: 10.1142/S0218202510004684. Google Scholar

[20]

J. A. CarrilloA. Klar and A. Roth, Single to double mill small noise transition via semi-lagrangian finite volume methods, Comm. Math. Sci., 14 (2016), 1111-1136. doi: 10.4310/CMS.2016.v14.n4.a12. Google Scholar

[21]

J. A. CarrilloS. Martin and V. Panferov, A new interaction potential for swarming models, Phys. D, 260 (2013), 112-126. doi: 10.1016/j.physd.2013.02.004. Google Scholar

[22]

J. A. CarrilloR. J. McCann and C. Villani, Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates, Rev. Mat. Iberoamericana, 19 (2003), 971-1018. doi: 10.4171/RMI/376. Google Scholar

[23]

J. A. Carrillo and J. L. Vázquez, Some free boundary problems involving non-local diffusion and aggregation, Philos. Trans. A, 373(2015), 20140275, 16pp. doi: 10.1098/rsta.2014.0275. Google Scholar

[24]

Y.-L. ChuangM. R. D'OrsognaD. MarthalerA. L. Bertozzi and L. S. Chayes, State transitions and the continuum limit for a 2D interacting, self-propelled particle system, Phys. D, 232 (2007), 33-47. doi: 10.1016/j.physd.2007.05.007. Google Scholar

[25]

M. R. D'OrsognaY.-L. ChuangA. L. Bertozzi and L. S. Chayes, Self-propelled particles with soft-core interactions: Patterns, stability, and collapse, Physical review letters, 96 (2006), 104302. Google Scholar

[26]

R. Estrada and R. P. Kanwal, Singular Integral Equations, Birkhäuser Boston, Inc., Boston, MA, 2000. doi: 10.1007/978-1-4612-1382-6. Google Scholar

[27]

K. Fellner and G. Raoul, Stable stationary states of non-local interaction equations, Math. Models Methods Appl. Sci., 20 (2010), 2267-2291. doi: 10.1142/S0218202510004921. Google Scholar

[28]

K. Fellner and G. Raoul, Stability of stationary states of non-local equations with singular interaction potentials, Math. Comput. Modelling, 53 (2011), 1436-1450. doi: 10.1016/j.mcm.2010.03.021. Google Scholar

[29]

R. C. Fetecau and Y. Huang, Equilibria of biological aggregations with nonlocal repulsive-attractive interactions, Phys. D, 260 (2013), 49-64. doi: 10.1016/j.physd.2012.11.004. Google Scholar

[30]

R. C. FetecauY. Huang and T. Kolokolnikov, Swarm dynamics and equilibria for a nonlocal aggregation model, Nonlinearity, 24 (2011), 2681-2716. doi: 10.1088/0951-7715/24/10/002. Google Scholar

[31]

D. D. Holm and V. Putkaradze, Formation of clumps and patches in self-aggregation of finite-size particles, Phys. D, 220 (2006), 183-196. doi: 10.1016/j.physd.2006.07.010. Google Scholar

[32]

Y. Huang, Explicit Barenblatt profiles for fractional porous medium equations, Bull. Lond. Math. Soc., 46 (2014), 857-869. doi: 10.1112/blms/bdu045. Google Scholar

[33]

B. D. Hughes and K. Fellner, Continuum models of cohesive stochastic swarms: The effect of motility on aggregation patterns, Phys. D, 260 (2013), 26-48. doi: 10.1016/j.physd.2013.05.001. Google Scholar

[34]

T. KolokolnikovJ. A. CarrilloA. BertozziR. Fetecau and M. Lewis, Emergent behaviour in multi-particle systems with non-local interactions [Editorial], Phys. D, 260 (2013), 1-4. doi: 10.1016/j.physd.2013.06.011. Google Scholar

[35]

T. KolokolnikovH. SunD. Uminsky and A. L. Bertozzi, Stability of ring patterns arising from two-dimensional particle interactions, Phys. Rev. E, 84 (2011), 015203. doi: 10.1103/PhysRevE.84.015203. Google Scholar

[36]

N. S. Landkof, Foundations of Modern Potential Theory, Springer-Verlag, New York-Heidelberg, 1972. Die Grundlehren der mathematischen Wissenschaften, Band 180. Google Scholar

[37]

A. J. LeverentzC. M. Topaz and A. J. Bernoff, Asymptotic dynamics of attractive-repulsive swarms, SIAM J. Appl. Dyn. Syst., 8 (2009), 880-908. doi: 10.1137/090749037. Google Scholar

[38]

H. LevineW.-J. Rappel and I. Cohen, Self-organization in systems of self-propelled particles, Physical Review E, 63 (2000), 017101. doi: 10.1103/PhysRevE.63.017101. Google Scholar

[39]

A. Mogilner and L. Edelstein-Keshet, A non-local model for a swarm, Journal of Mathematical Biology, 38 (1999), 534-570. doi: 10.1007/s002850050158. Google Scholar

[40]

L. Ryan, Analysis of swarm behavior in two dimensions, 2012. HMC Senior Theses.Google Scholar

[41]

R. SimioneD. Slepčev and I. Topaloglu, Existence of ground states of nonlocal-interaction energies, J. Stat. Phys., 159 (2015), 972-986. doi: 10.1007/s10955-015-1215-z. Google Scholar

[42]

C. Villani, Topics in Optimal Transportation, volume 58 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2003. doi: 10.1007/b12016. Google Scholar

Figure 1.  The steady states exist only on the shaded region and their expressions are obtained from the reduced governing equation
Figure 2.  Comparison between the compacted supported solutions (17) and the more singular steady states (22) with unit total mass ($M_0=1$): (a) the energy; (b) the radius of support
Figure 3.  The comparison of $K*\rho$ and $K*\rho_\delta$ at $a=5/2$ and $b=2$, for two solutions (17) and (22). The black dots indicate the boundary of the support of (17) and the support of (22)
Figure 4.  The compactly supported steady states exist only in the shaded region
Figure 5.  The radial profiles of the constructed solutions for $a=4$. As $b$ increase from $2-d$ (the Newtonian potential) to $b_{max} = (2+3d-d^2)/(d+1)$, the solution becomes negative starting at $\bar{b}=(2+2d-d^2)/(d+1)$
Figure 6.  The two limits of a sectionally analytical function $\Psi$ along the line segment connecting $-R$ and $R$
[1]

Z. K. Eshkuvatov, M. Kammuji, Bachok M. Taib, N. M. A. Nik Long. Effective approximation method for solving linear Fredholm-Volterra integral equations. Numerical Algebra, Control & Optimization, 2017, 7 (1) : 77-88. doi: 10.3934/naco.2017004

[2]

A. Pedas, G. Vainikko. Smoothing transformation and piecewise polynomial projection methods for weakly singular Fredholm integral equations. Communications on Pure & Applied Analysis, 2006, 5 (2) : 395-413. doi: 10.3934/cpaa.2006.5.395

[3]

Yin Yang, Yunqing Huang. Spectral Jacobi-Galerkin methods and iterated methods for Fredholm integral equations of the second kind with weakly singular kernel. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 685-702. doi: 10.3934/dcdss.2019043

[4]

Wenxiong Chen, Congming Li. Regularity of solutions for a system of integral equations. Communications on Pure & Applied Analysis, 2005, 4 (1) : 1-8. doi: 10.3934/cpaa.2005.4.1

[5]

Patricia J.Y. Wong. Existence of solutions to singular integral equations. Conference Publications, 2009, 2009 (Special) : 818-827. doi: 10.3934/proc.2009.2009.818

[6]

Juan Campos, Rafael Obaya, Massimo Tarallo. Recurrent equations with sign and Fredholm alternative. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 959-977. doi: 10.3934/dcdss.2016036

[7]

Zhong Tan, Leilei Tong. Asymptotic stability of stationary solutions for magnetohydrodynamic equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3435-3465. doi: 10.3934/dcds.2017146

[8]

Tomás Caraballo, P.E. Kloeden, B. Schmalfuss. Stabilization of stationary solutions of evolution equations by noise. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1199-1212. doi: 10.3934/dcdsb.2006.6.1199

[9]

M. R. Arias, R. Benítez. Properties of solutions for nonlinear Volterra integral equations. Conference Publications, 2003, 2003 (Special) : 42-47. doi: 10.3934/proc.2003.2003.42

[10]

Zhongying Chen, Bin Wu, Yuesheng Xu. Fast numerical collocation solutions of integral equations. Communications on Pure & Applied Analysis, 2007, 6 (3) : 643-666. doi: 10.3934/cpaa.2007.6.643

[11]

Congming Li, Jisun Lim. The singularity analysis of solutions to some integral equations. Communications on Pure & Applied Analysis, 2007, 6 (2) : 453-464. doi: 10.3934/cpaa.2007.6.453

[12]

Yutian Lei, Chao Ma. Asymptotic behavior for solutions of some integral equations. Communications on Pure & Applied Analysis, 2011, 10 (1) : 193-207. doi: 10.3934/cpaa.2011.10.193

[13]

Mingchun Wang, Jiankai Xu, Huoxiong Wu. On Positive solutions of integral equations with the weighted Bessel potentials. Communications on Pure & Applied Analysis, 2019, 18 (2) : 625-641. doi: 10.3934/cpaa.2019031

[14]

Marco A. S. Souto, Sérgio H. M. Soares. Ground state solutions for quasilinear stationary Schrödinger equations with critical growth. Communications on Pure & Applied Analysis, 2013, 12 (1) : 99-116. doi: 10.3934/cpaa.2013.12.99

[15]

Hong Cai, Zhong Tan. Stability of stationary solutions to the compressible bipolar Euler-Poisson equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4677-4696. doi: 10.3934/dcds.2017201

[16]

Youcef Amirat, Laurent Chupin, Rachid Touzani. Weak solutions to the equations of stationary magnetohydrodynamic flows in porous media. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2445-2464. doi: 10.3934/cpaa.2014.13.2445

[17]

Tomás Caraballo, M. J. Garrido-Atienza, B. Schmalfuss. Existence of exponentially attracting stationary solutions for delay evolution equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 271-293. doi: 10.3934/dcds.2007.18.271

[18]

Vladimir I. Bogachev, Stanislav V. Shaposhnikov, Alexander Yu. Veretennikov. Differentiability of solutions of stationary Fokker--Planck--Kolmogorov equations with respect to a parameter. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3519-3543. doi: 10.3934/dcds.2016.36.3519

[19]

L. Cherfils, Y. Il'yasov. On the stationary solutions of generalized reaction diffusion equations with $p\& q$-Laplacian. Communications on Pure & Applied Analysis, 2005, 4 (1) : 9-22. doi: 10.3934/cpaa.2005.4.9

[20]

Youcef Amirat, Kamel Hamdache. Weak solutions to stationary equations of heat transfer in a magnetic fluid. Communications on Pure & Applied Analysis, 2019, 18 (2) : 709-734. doi: 10.3934/cpaa.2019035

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (28)
  • HTML views (5)
  • Cited by (3)

Other articles
by authors

[Back to Top]