March  2017, 10(1): 215-237. doi: 10.3934/krm.2017009

Deterministic particle approximation of the Hughes model in one space dimension

1. 

DISIM, Università degli Studi dell'Aquila, via Vetoio 1 (Coppito), 67100 L'Aquila (AQ), Italy

2. 

Instytut Matematyki, Uniwersytet Marii Curie-Skłodowskiej, plac Marii Curie-Skłodowskiej 1, 20-031 Lublin, Poland

3. 

Dipartimento di Matematica ed Informatica, Università di Catania, Viale Andrea Doria 6,95125 Catania, Italy

* Corresponding author: Marco Di Francesco

Received  March 2016 Revised  July 2016 Published  November 2016

In this paper we present a new approach to the solution to a generalized version of Hughes' models for pedestrian movements based on a follow-the-leader many particle approximation. In particular, we provide a rigorous global existence result under a smallness assumption on the initial data ensuring that the trace of the solution along the turning curve is zero for all positive times. We also focus briefly on the approximation procedure for symmetric data and Riemann type data. Two different numerical approaches are adopted for the simulation of the model, namely the proposed particle method and a Godunov type scheme. Several numerical tests are presented, which are in agreement with the theoretical prediction.

Citation: Marco Di Francesco, Simone Fagioli, Massimiliano Daniele Rosini, Giovanni Russo. Deterministic particle approximation of the Hughes model in one space dimension. Kinetic & Related Models, 2017, 10 (1) : 215-237. doi: 10.3934/krm.2017009
References:
[1]

D. Amadori and M. Di Francesco, The one-dimensional Hughes model for pedestrian flow: Riemann-type solutions, Acta Math. Sci. Ser. B Engl. Ed., 32 (2012), 259-280, http://dx.doi.org/10.1016/S0252-9602(12)60016-2. doi: 10.1016/S0252-9602(12)60016-2. Google Scholar

[2]

D. Amadori, P. Goatin and M. D. Rosini, Existence results for Hughes’ model for pedestrian flows, J. Math. Anal. Appl., 420 (2014), 387-406, http://dx.doi.org/10.1016/j.jmaa.2014.05.072. doi: 10.1016/j.jmaa.2014.05.072. Google Scholar

[3]

B. Andreianov, C. Donadello, U. Razafison and M. D. Rosini, Riemann problems with non{local point constraints and capacity drop, Mathematical Biosciences and Engineering, 12 (2015), 259-278, http://aimsciences.org/journals/displayArticlesnew.jsp?paperID=10696. Google Scholar

[4]

B. Andreianov, C. Donadello and M. D. Rosini, Crowd dynamics and conservation laws with nonlocal constraints and capacity drop, Math. Models Methods Appl. Sci., 24 (2014), 2685-2722, . doi: 10.1142/S0218202514500341. Google Scholar

[5]

B. Andreianov, C. Donadello, U. Razafison and M. D. Rosini, Qualitative behaviour and numerical approximation of solutions to conservation laws with non-local point constraints on the flux and modeling of crowd dynamics at the bottlenecks, ESAIM: M2AN, http://dx.doi.org/10.1051/m2an/2015078.Google Scholar

[6]

C. Bardos, A. Y. le Roux and J.-C. Nédélec, First order quasilinear equations with boundary conditions, Comm. Partial Differential Equations, 4 (1979), 1017-1034, http://dx.doi.org/10.1080/03605307908820117. doi: 10.1080/03605307908820117. Google Scholar

[7]

N. Bellomo and A. Bellouquid, On the modeling of crowd dynamics: Looking at the beautiful shapes of swarms, Networks and Heterogeneous Media, 6 (2011), 383-399. doi: 10.3934/nhm.2011.6.383. Google Scholar

[8]

D. BraessA. Nagurney and T. Wakolbinger, On a paradox of traffic planning, Transportation Science, 39 (2005), 446-450. doi: 10.1287/trsc.1050.0127. Google Scholar

[9]

A. Bressan, Hyperbolic Systems of Conservation Laws vol. 20 of Oxford Lecture Series in Mathematics and its Applications, Oxford University Press, Oxford, 2000. Google Scholar

[10]

M. Burger, M. Di Francesco, P. A. Markowich and M.-T. Wolfram, Mean field games with nonlinear mobilities in pedestrian dynamics, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 1311-1333, http://dx.doi.org/10.3934/dcdsb.2014.19.1311. doi: 10.3934/dcdsb.2014.19.1311. Google Scholar

[11]

J. A. Carrillo, S. Martin and M. -T. Wolfram, A local version of the hughes model for pedestrian flow, to appear in Mathematical Models and Methods in the Applied Sciences, 2015, Url: http://arxiv.org/abs/1501.07054.Google Scholar

[12]

R.M. Colombo and M.D. Rosini, Existence of nonclassical solutions in a pedestrian flow model, Nonlinear Anal. Real World Appl., 10 (2009), 2716-2728. doi: 10.1016/j.nonrwa.2008.08.002. Google Scholar

[13]

R. M. Colombo, P. Goatin and M. D. Rosini, A macroscopic model for pedestrian flows in panic situations, in Current advances in nonlinear analysis and related topics, vol. 32 of GAKUTO Internat. Ser. Math. Sci. Appl., Gakkōtosho, Tokyo, 2010,255-272. Google Scholar

[14]

R. M. Colombo and M. D. Rosini, Pedestrian flows and non-classical shocks, Math. Methods Appl. Sci., 28 (2005), 1553-1567, http://dx.doi.org/10.1002/mma.624. doi: 10.1002/mma.624. Google Scholar

[15]

C.M. Dafermos, Polygonal approximations of solutions of the initial value problem for a conservation law, J. Math. Anal. Appl., 38 (1972), 33-41. doi: 10.1016/0022-247X(72)90114-X. Google Scholar

[16]

M. DiFrancesco, S. Fagioli, M. D. Rosini and G. Russo, Follow-the-leader approximation of the Dirichlet boundary value problem for a scalar conservation law, In preparation.Google Scholar

[17]

M. DiFrancesco and M.D. Rosini, Rigorous derivation of nonlinear scalar conservation laws from follow-the-leader type models via many particle limit, Arch. Ration. Mech. Anal., 217 (2015), 831-871. doi: 10.1007/s00205-015-0843-4. Google Scholar

[18]

M. Di Francesco, P. A. Markowich, J.-F. Pietschmann and M.-T. Wolfram, On the Hughes’ model for pedestrian flow: The one-dimensional case, J. Differential Equations, 250 (2011), 1334-1362, http://dx.doi.org/10.1016/j.jde.2010.10.015. doi: 10.1016/j.jde.2010.10.015. Google Scholar

[19]

F. Dubois and P. LeFloch, Boundary conditions for nonlinear hyperbolic systems of conservation laws, J. Differential Equations, 71 (1988), 93-122. doi: 10.1016/0022-0396(88)90040-X. Google Scholar

[20]

N. El-Khatib, P. Goatin and M. D. Rosini, On entropy weak solutions of Hughes’ model for pedestrian motion, Z. Angew. Math. Phys., 64 (2013), 223-251, http://dx.doi.org/10.1007/s00033-012-0232-x. doi: 10.1007/s00033-012-0232-x. Google Scholar

[21]

P. Goatin and M. Mimault, The wave-front tracking algorithm for Hughes’ model of pedestrian motion, SIAM J. Sci. Comput., 35 (2013), B606-B622, http://dx.doi.org/10.1137/120898863. doi: 10.1137/120898863. Google Scholar

[22]

D. HelbingA. Johansson and H.Z. Al-Abideen, An empirical study, Physical Review E (Statistical, Nonlinear, and Soft Matter Physics), 75 (2007), 046109. doi: 10.1103/PhysRevE.75.046109. Google Scholar

[23]

L.F. Henderson, The statistics of crowd fluids, Nature, 229 (1971), 381-383. doi: 10.1038/229381a0. Google Scholar

[24]

R. L. Hughes, A continuum theory for the flow of pedestrians, Transportation Research Part B: Methodological, 36 (2002), 507-535, http://www.sciencedirect.com/science/article/pii/S0191261501000157. doi: 10.1016/S0191-2615(01)00015-7. Google Scholar

[25]

R. L. Hughes, The flow of human crowds, in Annual review of fluid mechanics, vol. 35 of Annu. Rev. Fluid Mech., Annual Reviews, Palo Alto, CA, 2003,169-182, http://dx.doi.org/10.1146/annurev.fluid.35.101101.161136. doi: 10.1146/annurev.fluid.35.101101.161136. Google Scholar

[26]

K. H. Karlsen, K. -A. Lie and N. H. Risebro, A front tracking method for conservation laws with boundary conditions, in Hyperbolic problems: theory, numerics, applications, Vol. Ⅰ (Zürich, 1998), vol. 129 of Internat. Ser. Numer. Math., Birkhäuser, Basel, 1999,493-502. Google Scholar

[27]

S.N. Kruzhkov, First order quasilinear equations with several independent variables., Mat. Sb. (N.S.), 81 (1970), 228-255. Google Scholar

[28]

M.J. Lighthill and G.B. Whitham, On kinematic waves. ii. a theory of traffic flow on long crowded roads, Royal Society of London Proceedings Series A, 229 (1955), 317-345. doi: 10.1098/rspa.1955.0089. Google Scholar

[29]

B. MauryA. Roudneff-Chupin and F. Santambrogio, A macroscopic crowd motion model of gradient flow type, Math. Models Methods Appl. Sci., 20 (2010), 1787-1821. doi: 10.1142/S0218202510004799. Google Scholar

[30]

M. Muramatsu and T. Nagatani, Jamming transition in two-dimensional pedestrian traffic, Physica A, 275 (2000), 281-291. doi: 10.1016/S0378-4371(99)00447-1. Google Scholar

[31]

E. Y. Panov, Existence of strong traces for quasi-solutions of multidimensional conservation laws, J. Hyperbolic Differ. Equ., 4 (2007), 729-770, http://dx.doi.org/10.1142/S0219891607001343. doi: 10.1142/S0219891607001343. Google Scholar

[32]

B. Piccoli and A. Tosin, Pedestrian flows in bounded domains with obstacles, Contin. Mech. Thermodyn., 21 (2009), 85-107. doi: 10.1007/s00161-009-0100-x. Google Scholar

[33]

P.I. Richards, Shock waves on the highway, Operations Res., 4 (1956), 42-51. doi: 10.1287/opre.4.1.42. Google Scholar

[34]

M. D. Rosini, Macroscopic Models for Vehicular Flows and Crowd Dynamics: Theory and Applications, Understanding Complex Systems, Springer, Heidelberg, 2013, Classical and non-classical advanced mathematics for real life applications. doi: 10.1007/978-3-319-00155-5. Google Scholar

[35]

A. TreuilleS. Cooper and Z. Popovic, Continuum crowds, ACM Transaction on Graphics, 25 (2006), 1160-1168, Proceedings of SCM SIGGRAPH 2006. doi: 10.1145/1179352.1142008. Google Scholar

[36]

M. Twarogowska, P. Goatin and R. Duvigneau, Macroscopic modeling and simulations of room evacuation, Appl. Math. Model., 38 (2014), 5781-5795, http://dx.doi.org/10.1016/j.apm.2014.03.027. doi: 10.1016/j.apm.2014.03.027. Google Scholar

[37]

A. Vasseur, Strong traces for solutions of multidimensional scalar conservation laws, Arch. Ration. Mech. Anal., 160 (2001), 181-193, http://dx.doi.org/10.1007/s002050100157. doi: 10.1007/s002050100157. Google Scholar

show all references

References:
[1]

D. Amadori and M. Di Francesco, The one-dimensional Hughes model for pedestrian flow: Riemann-type solutions, Acta Math. Sci. Ser. B Engl. Ed., 32 (2012), 259-280, http://dx.doi.org/10.1016/S0252-9602(12)60016-2. doi: 10.1016/S0252-9602(12)60016-2. Google Scholar

[2]

D. Amadori, P. Goatin and M. D. Rosini, Existence results for Hughes’ model for pedestrian flows, J. Math. Anal. Appl., 420 (2014), 387-406, http://dx.doi.org/10.1016/j.jmaa.2014.05.072. doi: 10.1016/j.jmaa.2014.05.072. Google Scholar

[3]

B. Andreianov, C. Donadello, U. Razafison and M. D. Rosini, Riemann problems with non{local point constraints and capacity drop, Mathematical Biosciences and Engineering, 12 (2015), 259-278, http://aimsciences.org/journals/displayArticlesnew.jsp?paperID=10696. Google Scholar

[4]

B. Andreianov, C. Donadello and M. D. Rosini, Crowd dynamics and conservation laws with nonlocal constraints and capacity drop, Math. Models Methods Appl. Sci., 24 (2014), 2685-2722, . doi: 10.1142/S0218202514500341. Google Scholar

[5]

B. Andreianov, C. Donadello, U. Razafison and M. D. Rosini, Qualitative behaviour and numerical approximation of solutions to conservation laws with non-local point constraints on the flux and modeling of crowd dynamics at the bottlenecks, ESAIM: M2AN, http://dx.doi.org/10.1051/m2an/2015078.Google Scholar

[6]

C. Bardos, A. Y. le Roux and J.-C. Nédélec, First order quasilinear equations with boundary conditions, Comm. Partial Differential Equations, 4 (1979), 1017-1034, http://dx.doi.org/10.1080/03605307908820117. doi: 10.1080/03605307908820117. Google Scholar

[7]

N. Bellomo and A. Bellouquid, On the modeling of crowd dynamics: Looking at the beautiful shapes of swarms, Networks and Heterogeneous Media, 6 (2011), 383-399. doi: 10.3934/nhm.2011.6.383. Google Scholar

[8]

D. BraessA. Nagurney and T. Wakolbinger, On a paradox of traffic planning, Transportation Science, 39 (2005), 446-450. doi: 10.1287/trsc.1050.0127. Google Scholar

[9]

A. Bressan, Hyperbolic Systems of Conservation Laws vol. 20 of Oxford Lecture Series in Mathematics and its Applications, Oxford University Press, Oxford, 2000. Google Scholar

[10]

M. Burger, M. Di Francesco, P. A. Markowich and M.-T. Wolfram, Mean field games with nonlinear mobilities in pedestrian dynamics, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 1311-1333, http://dx.doi.org/10.3934/dcdsb.2014.19.1311. doi: 10.3934/dcdsb.2014.19.1311. Google Scholar

[11]

J. A. Carrillo, S. Martin and M. -T. Wolfram, A local version of the hughes model for pedestrian flow, to appear in Mathematical Models and Methods in the Applied Sciences, 2015, Url: http://arxiv.org/abs/1501.07054.Google Scholar

[12]

R.M. Colombo and M.D. Rosini, Existence of nonclassical solutions in a pedestrian flow model, Nonlinear Anal. Real World Appl., 10 (2009), 2716-2728. doi: 10.1016/j.nonrwa.2008.08.002. Google Scholar

[13]

R. M. Colombo, P. Goatin and M. D. Rosini, A macroscopic model for pedestrian flows in panic situations, in Current advances in nonlinear analysis and related topics, vol. 32 of GAKUTO Internat. Ser. Math. Sci. Appl., Gakkōtosho, Tokyo, 2010,255-272. Google Scholar

[14]

R. M. Colombo and M. D. Rosini, Pedestrian flows and non-classical shocks, Math. Methods Appl. Sci., 28 (2005), 1553-1567, http://dx.doi.org/10.1002/mma.624. doi: 10.1002/mma.624. Google Scholar

[15]

C.M. Dafermos, Polygonal approximations of solutions of the initial value problem for a conservation law, J. Math. Anal. Appl., 38 (1972), 33-41. doi: 10.1016/0022-247X(72)90114-X. Google Scholar

[16]

M. DiFrancesco, S. Fagioli, M. D. Rosini and G. Russo, Follow-the-leader approximation of the Dirichlet boundary value problem for a scalar conservation law, In preparation.Google Scholar

[17]

M. DiFrancesco and M.D. Rosini, Rigorous derivation of nonlinear scalar conservation laws from follow-the-leader type models via many particle limit, Arch. Ration. Mech. Anal., 217 (2015), 831-871. doi: 10.1007/s00205-015-0843-4. Google Scholar

[18]

M. Di Francesco, P. A. Markowich, J.-F. Pietschmann and M.-T. Wolfram, On the Hughes’ model for pedestrian flow: The one-dimensional case, J. Differential Equations, 250 (2011), 1334-1362, http://dx.doi.org/10.1016/j.jde.2010.10.015. doi: 10.1016/j.jde.2010.10.015. Google Scholar

[19]

F. Dubois and P. LeFloch, Boundary conditions for nonlinear hyperbolic systems of conservation laws, J. Differential Equations, 71 (1988), 93-122. doi: 10.1016/0022-0396(88)90040-X. Google Scholar

[20]

N. El-Khatib, P. Goatin and M. D. Rosini, On entropy weak solutions of Hughes’ model for pedestrian motion, Z. Angew. Math. Phys., 64 (2013), 223-251, http://dx.doi.org/10.1007/s00033-012-0232-x. doi: 10.1007/s00033-012-0232-x. Google Scholar

[21]

P. Goatin and M. Mimault, The wave-front tracking algorithm for Hughes’ model of pedestrian motion, SIAM J. Sci. Comput., 35 (2013), B606-B622, http://dx.doi.org/10.1137/120898863. doi: 10.1137/120898863. Google Scholar

[22]

D. HelbingA. Johansson and H.Z. Al-Abideen, An empirical study, Physical Review E (Statistical, Nonlinear, and Soft Matter Physics), 75 (2007), 046109. doi: 10.1103/PhysRevE.75.046109. Google Scholar

[23]

L.F. Henderson, The statistics of crowd fluids, Nature, 229 (1971), 381-383. doi: 10.1038/229381a0. Google Scholar

[24]

R. L. Hughes, A continuum theory for the flow of pedestrians, Transportation Research Part B: Methodological, 36 (2002), 507-535, http://www.sciencedirect.com/science/article/pii/S0191261501000157. doi: 10.1016/S0191-2615(01)00015-7. Google Scholar

[25]

R. L. Hughes, The flow of human crowds, in Annual review of fluid mechanics, vol. 35 of Annu. Rev. Fluid Mech., Annual Reviews, Palo Alto, CA, 2003,169-182, http://dx.doi.org/10.1146/annurev.fluid.35.101101.161136. doi: 10.1146/annurev.fluid.35.101101.161136. Google Scholar

[26]

K. H. Karlsen, K. -A. Lie and N. H. Risebro, A front tracking method for conservation laws with boundary conditions, in Hyperbolic problems: theory, numerics, applications, Vol. Ⅰ (Zürich, 1998), vol. 129 of Internat. Ser. Numer. Math., Birkhäuser, Basel, 1999,493-502. Google Scholar

[27]

S.N. Kruzhkov, First order quasilinear equations with several independent variables., Mat. Sb. (N.S.), 81 (1970), 228-255. Google Scholar

[28]

M.J. Lighthill and G.B. Whitham, On kinematic waves. ii. a theory of traffic flow on long crowded roads, Royal Society of London Proceedings Series A, 229 (1955), 317-345. doi: 10.1098/rspa.1955.0089. Google Scholar

[29]

B. MauryA. Roudneff-Chupin and F. Santambrogio, A macroscopic crowd motion model of gradient flow type, Math. Models Methods Appl. Sci., 20 (2010), 1787-1821. doi: 10.1142/S0218202510004799. Google Scholar

[30]

M. Muramatsu and T. Nagatani, Jamming transition in two-dimensional pedestrian traffic, Physica A, 275 (2000), 281-291. doi: 10.1016/S0378-4371(99)00447-1. Google Scholar

[31]

E. Y. Panov, Existence of strong traces for quasi-solutions of multidimensional conservation laws, J. Hyperbolic Differ. Equ., 4 (2007), 729-770, http://dx.doi.org/10.1142/S0219891607001343. doi: 10.1142/S0219891607001343. Google Scholar

[32]

B. Piccoli and A. Tosin, Pedestrian flows in bounded domains with obstacles, Contin. Mech. Thermodyn., 21 (2009), 85-107. doi: 10.1007/s00161-009-0100-x. Google Scholar

[33]

P.I. Richards, Shock waves on the highway, Operations Res., 4 (1956), 42-51. doi: 10.1287/opre.4.1.42. Google Scholar

[34]

M. D. Rosini, Macroscopic Models for Vehicular Flows and Crowd Dynamics: Theory and Applications, Understanding Complex Systems, Springer, Heidelberg, 2013, Classical and non-classical advanced mathematics for real life applications. doi: 10.1007/978-3-319-00155-5. Google Scholar

[35]

A. TreuilleS. Cooper and Z. Popovic, Continuum crowds, ACM Transaction on Graphics, 25 (2006), 1160-1168, Proceedings of SCM SIGGRAPH 2006. doi: 10.1145/1179352.1142008. Google Scholar

[36]

M. Twarogowska, P. Goatin and R. Duvigneau, Macroscopic modeling and simulations of room evacuation, Appl. Math. Model., 38 (2014), 5781-5795, http://dx.doi.org/10.1016/j.apm.2014.03.027. doi: 10.1016/j.apm.2014.03.027. Google Scholar

[37]

A. Vasseur, Strong traces for solutions of multidimensional scalar conservation laws, Arch. Ration. Mech. Anal., 160 (2001), 181-193, http://dx.doi.org/10.1007/s002050100157. doi: 10.1007/s002050100157. Google Scholar

Figure 1.  Evolution of $R(t,x)$ with initial data $\bar{\rho}(x)=0.25$ at times $t=0$, $t=0.5$ and $t=1$. In the particle simulations the blu dots represent particles positions, whereas the red line is the discretized density. The magenta vertical line describes the turning point evolution
Figure 2.  Evolution of $R(t,x)$ with initial data $\bar{\rho}(x)=0.6$ at times $t=0$, $t=0.5$ and $t=1$
Figure 3.  Evolution of $R(t,x)$ with initial data $\bar{\rho}(x)$ given in (24)
Figure 4.  Evolution of $R(t,x)$ with initial data $\bar{\rho}(x)$ given in (25)
Figure 5.  Evolution of $R(t,x)$ with initial data $\bar{\rho}(x)$ given in (26)
Figure 6.  Mass transfer across the turning point and non-classical shock with initial data $\bar{\rho}$ given in (26)
Figure 7.  Comparison between the Follow-the-Leader scheme (in red) and the Godunov scheme (in blu)
Figure 8.  Increasing the number of particles, and then the cells integration for the Godunov method, the agreement between the two methods greatly improves. Here we consider the initial datum $\bar{\rho}=0.3\times\,\mathbf{1}_{[-1,0]}+0.7\times \,\mathbf{1}_{(0,1]}$ and we set $N=1000$ with $1500$ time iterations
[1]

Fabio Camilli, Adriano Festa, Silvia Tozza. A discrete Hughes model for pedestrian flow on graphs. Networks & Heterogeneous Media, 2017, 12 (1) : 93-112. doi: 10.3934/nhm.2017004

[2]

Dirk Hartmann, Isabella von Sivers. Structured first order conservation models for pedestrian dynamics. Networks & Heterogeneous Media, 2013, 8 (4) : 985-1007. doi: 10.3934/nhm.2013.8.985

[3]

Christophe Chalons, Paola Goatin, Nicolas Seguin. General constrained conservation laws. Application to pedestrian flow modeling. Networks & Heterogeneous Media, 2013, 8 (2) : 433-463. doi: 10.3934/nhm.2013.8.433

[4]

Boris Andreianov, Kenneth H. Karlsen, Nils H. Risebro. On vanishing viscosity approximation of conservation laws with discontinuous flux. Networks & Heterogeneous Media, 2010, 5 (3) : 617-633. doi: 10.3934/nhm.2010.5.617

[5]

Abdul M. Kamareddine, Roger L. Hughes. Towards a mathematical model for stability in pedestrian flows. Networks & Heterogeneous Media, 2011, 6 (3) : 465-483. doi: 10.3934/nhm.2011.6.465

[6]

Alexander Bobylev, Mirela Vinerean, Åsa Windfäll. Discrete velocity models of the Boltzmann equation and conservation laws. Kinetic & Related Models, 2010, 3 (1) : 35-58. doi: 10.3934/krm.2010.3.35

[7]

María Santos Bruzón, Tamara María Garrido. Symmetries and conservation laws of a KdV6 equation. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 631-641. doi: 10.3934/dcdss.2018038

[8]

Mark A. Peletier, Marco Veneroni. Stripe patterns and the Eikonal equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 183-189. doi: 10.3934/dcdss.2012.5.183

[9]

Veronika Schleper. A hybrid model for traffic flow and crowd dynamics with random individual properties. Mathematical Biosciences & Engineering, 2015, 12 (2) : 393-413. doi: 10.3934/mbe.2015.12.393

[10]

Daewa Kim, Annalisa Quaini. A kinetic theory approach to model pedestrian dynamics in bounded domains with obstacles. Kinetic & Related Models, 2019, 12 (6) : 1273-1296. doi: 10.3934/krm.2019049

[11]

Chadi Nour. Construction of solutions to a global Eikonal equation. Conference Publications, 2007, 2007 (Special) : 779-783. doi: 10.3934/proc.2007.2007.779

[12]

María Rosa, María de los Santos Bruzón, María de la Luz Gandarias. Lie symmetries and conservation laws of a Fisher equation with nonlinear convection term. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1331-1339. doi: 10.3934/dcdss.2015.8.1331

[13]

Gianluca Crippa, Laura V. Spinolo. An overview on some results concerning the transport equation and its applications to conservation laws. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1283-1293. doi: 10.3934/cpaa.2010.9.1283

[14]

Anupam Sen, T. Raja Sekhar. Structural stability of the Riemann solution for a strictly hyperbolic system of conservation laws with flux approximation. Communications on Pure & Applied Analysis, 2019, 18 (2) : 931-942. doi: 10.3934/cpaa.2019045

[15]

Yuri B. Gaididei, Christian Marschler, Mads Peter Sørensen, Peter L. Christiansen, Jens Juul Rasmussen. Pattern formation in flows of asymmetrically interacting particles: Peristaltic pedestrian dynamics as a case study. Evolution Equations & Control Theory, 2019, 8 (1) : 73-100. doi: 10.3934/eect.2019005

[16]

Avner Friedman. Conservation laws in mathematical biology. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3081-3097. doi: 10.3934/dcds.2012.32.3081

[17]

Mauro Garavello. A review of conservation laws on networks. Networks & Heterogeneous Media, 2010, 5 (3) : 565-581. doi: 10.3934/nhm.2010.5.565

[18]

Mauro Garavello, Roberto Natalini, Benedetto Piccoli, Andrea Terracina. Conservation laws with discontinuous flux. Networks & Heterogeneous Media, 2007, 2 (1) : 159-179. doi: 10.3934/nhm.2007.2.159

[19]

Len G. Margolin, Roy S. Baty. Conservation laws in discrete geometry. Journal of Geometric Mechanics, 2019, 11 (2) : 187-203. doi: 10.3934/jgm.2019010

[20]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (13)
  • HTML views (2)
  • Cited by (3)

[Back to Top]