March  2017, 10(1): 263-298. doi: 10.3934/krm.2017011

On the classical limit of a time-dependent self-consistent field system: Analysis and computation

1. 

Department of Mathematics, University of Wisconsin-Madison, 480 Lincoln Drive, Madison, WI 53706, USA

2. 

Department of Mathematics, Institute of Natural Sciences and MOE Key Lab in Scientific, and Engineering Computing, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, China

3. 

Department of Mathematics, Statistics, and Computer Science, M/C 249, University of Illinois at Chicago, 851 S. Morgan Street, Chicago, IL 60607, USA

4. 

Department of Mathematics, Duke University, Box 90320, Durham NC 27708, USA

Dedicated to Peter Markowich on the occasion of his 60th birthday

Received  October 2015 Revised  January 2016 Published  November 2016

Fund Project: This work was partially supported by NSF grants DMS-1522184 and DMS-1107291: NSF Research Network in Mathematical Sciences KI-Net: Kinetic description of emerging challenges in multiscale problems of natural sciences. C.S. acknowledges support by the NSF through grant numbers DMS-1161580 and DMS-1348092.

We consider a coupled system of Schrödinger equations, arising in quantum mechanics via the so-called time-dependent self-consistent field method. Using Wigner transformation techniques we study the corresponding classical limit dynamics in two cases. In the first case, the classical limit is only taken in one of the two equations, leading to a mixed quantum-classical model which is closely connected to the well-known Ehrenfest method in molecular dynamics. In the second case, the classical limit of the full system is rigorously established, resulting in a system of coupled Vlasov-type equations. In the second part of our work, we provide a numerical study of the coupled semi-classically scaled Schrödinger equations and of the mixed quantum-classical model obtained via Ehrenfest's method. A second order (in time) method is introduced for each case. We show that the proposed methods allow time steps independent of the semi-classical parameter(s) while still capturing the correct behavior of physical observables. It also becomes clear that the order of accuracy of our methods can be improved in a straightforward way.

Citation: Shi Jin, Christof Sparber, Zhennan Zhou. On the classical limit of a time-dependent self-consistent field system: Analysis and computation. Kinetic & Related Models, 2017, 10 (1) : 263-298. doi: 10.3934/krm.2017011
References:
[1]

W. BaoS. Jin and P. A. Markowich, Numerical study of time-splitting spectral discretizations of nonlinear Schrödinger equations in the semiclassical regimes, SIAM J. Sci. Comput., 25 (2003), 27-64. doi: 10.1137/S1064827501393253.

[2]

W. BaoS. Jin and P. A. Markowich, On time-splitting spectral approximations for the Schrödinger equation in the semi-classical regime, J. Comput. Phys., 175 (2002), 487-524. doi: 10.1006/jcph.2001.6956.

[3]

C. Bayer, H. Hoel, A. Kadir, P. Plechac, M. Sandberg and A. Szepessy, Computational error estimates for Born-Oppenheimer molecular dynamics with nearly crossing potential surfaces, Appl Math Res Express, 2015 (2015), 329–417, arXiv: 1305.3330. doi: 10.1093/amrx/abv007.

[4]

R. H. BisselingR. KosloffR. B. GerberM. A. RatnerL. Gibson and C. Cerjan, Exact time-dependent quantum mechanical dissociation dynamics of I2 He: Comparison of exact time-dependent quantum calculation with the quantum time-dependent self-consistent field (TDSCF) approximation, J. Chem. Phys., 87 (1987), 2760-2765.

[5]

F. BornemannP. Nettesheim and C. Schütte, Quantum-classical molecular dynamics as an approximation to full quantum dynamics, J. Chem. Phys., 105 (1996), 1074-1083. doi: 10.1063/1.471952.

[6]

F. Bornemann and C. Schütte, On the singular limit of the quantum-classical molecular dynamics model, SIAM J. Appl. Math., 59 (1999), 1208-1224. doi: 10.1137/S0036139997318834.

[7]

R. Carles, On Fourier time-splitting methods for nonlinear Schrödinger equations in the semi-classical limit, SIAM J. Numer. Anal., 51 (2013), 3232-3258. doi: 10.1137/120892416.

[8]

T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics vo. 10, New York University, 2003. doi: 10.1090/cln/010.

[9]

K. Drukker, Basics of surface hopping in mixed quantum/classical simulations, J. Comput. Phys., 153 (1999), 225-272. doi: 10.1006/jcph.1999.6287.

[10]

I. Gasser and P. A. Markowich, Quantum hydrodynamics, Wigner transforms and the classical limit, Asymptotic Analysis, 14 (1997), 97-116.

[11]

P. GérardP. MarkowichN. Mauser and F. Poupaud, Homogenization Limits and Wigner transforms, Comm. Pure Appl. Math., 50 (1997), 323-379. doi: 10.1002/(SICI)1097-0312(199704)50:4<323::AID-CPA4>3.0.CO;2-C.

[12]

E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration: Structure-preserving Algorithms for Ordinary Differential Equations vo. 31, Springer, Heidelberg, 2010.

[13]

J. Hinze, MC-SCF. I. The multi-configurational self-consistent-field method, J. Chem. Phys., 59 (1973), 6424-6432. doi: 10.1063/1.1680022.

[14]

S. JinC. D. Levermore and D. W. McLaughlin, The behavior of solutions of the NLS equation in the semi-classical limit, Singular limits of dispersive waves, Springer US, 320 (1994), 235-255.

[15]

S. JinP. Markowich and C. Sparber, Mathematical and computational methods for semi-classical Schrödinger equations, Acta Num., 20 (2011), 121-209. doi: 10.1017/S0962492911000031.

[16]

S. Jin and Z. Zhou, A semi-Lagrangian time splitting method for the Schrödinger equation with vector potentials, Comm. Inf. Syst., 13 (2013), 247-289. doi: 10.4310/CIS.2013.v13.n3.a1.

[17]

C. Klein, Fourth order time-stepping for low dispersion Korteweg-de Vries and nonlinear Schrödinger equations, Electronic Trans. Num. Anal., 29 (2008), 116-135.

[18]

Z. KotlerE. Neria and A. Nitzan, Multiconfiguration time-dependent self-consistent field approximations in the numerical-solution of quantum dynamic problems, Comput. Phys. Comm., 63 (1991), 243-258.

[19]

Z. KotlerA. Nitzan and R. Kosloff, Multiconfiguration time-dependent self-consistent field approximation for curve crossing in presence of a bath. A Fast Fourier Transform study, Chem. Phys. Lett., 153 (1988), 483-489. doi: 10.1016/0009-2614(88)85247-3.

[20]

P. L. Lions and T. Paul, Sur les measures de Wigner, Rev. Math. Iberoamericana, 9 (1993), 553-618. doi: 10.4171/RMI/143.

[21]

N. Makri and W. H. Miller, Time-dependent self-consistent field (TDSCF) approximation for a reaction coordinate coupled to a harmonic bath: Single and multiple configuration treatments, J. Chem. Phys., 87 (1987), 5781-5787. doi: 10.1063/1.453501.

[22]

P. Markowich and N. Mauser, The classical limit of a self-consistent quantum-Vlasov equation in 3-D, Math. Models Methods Appl. Sci., 3 (1993), 109-124. doi: 10.1142/S0218202593000072.

[23]

P. A. MarkowichP. Pietra and C. Pohl, Numerical approximation of quadratic observables of Schrödinger type equations in the semi-classical limit, Numer. Math., 81 (1999), 595-630. doi: 10.1007/s002110050406.

[24]

C. SparberP. A. Markowich and N. J. Mauser, Wigner functions versus WKB-methods in multivalued geometrical optics, Asymptotic Analysis, 33 (2003), 153-187.

[25]

H. Spohn and S. Teufel, Adiabatic decoupling and time-dependent born oppenheimer theory, Comm. Math. Phys., 224 (2001), 113-132. doi: 10.1007/s002200100535.

[26]

X. Sun and W. H. Miller, Mixed semi-classical classical approaches to the dynamics of complex molecular systems, J. Chem. Phys., 106 (1997), 916-927.

[27]

A. Szepessy, Langevin molecular dynamics derived from Ehrenfest dynamics, Math. Models Methods Appl. Sci., 21 (2011), 2289-2334. doi: 10.1142/S0218202511005751.

[28]

E. Wigner, On the quantum correction for the thermodynamic equilibrium, The Collected Works of Eugene Paul Wigner, A/4 (1997), 110-120. doi: 10.1007/978-3-642-59033-7_9.

show all references

References:
[1]

W. BaoS. Jin and P. A. Markowich, Numerical study of time-splitting spectral discretizations of nonlinear Schrödinger equations in the semiclassical regimes, SIAM J. Sci. Comput., 25 (2003), 27-64. doi: 10.1137/S1064827501393253.

[2]

W. BaoS. Jin and P. A. Markowich, On time-splitting spectral approximations for the Schrödinger equation in the semi-classical regime, J. Comput. Phys., 175 (2002), 487-524. doi: 10.1006/jcph.2001.6956.

[3]

C. Bayer, H. Hoel, A. Kadir, P. Plechac, M. Sandberg and A. Szepessy, Computational error estimates for Born-Oppenheimer molecular dynamics with nearly crossing potential surfaces, Appl Math Res Express, 2015 (2015), 329–417, arXiv: 1305.3330. doi: 10.1093/amrx/abv007.

[4]

R. H. BisselingR. KosloffR. B. GerberM. A. RatnerL. Gibson and C. Cerjan, Exact time-dependent quantum mechanical dissociation dynamics of I2 He: Comparison of exact time-dependent quantum calculation with the quantum time-dependent self-consistent field (TDSCF) approximation, J. Chem. Phys., 87 (1987), 2760-2765.

[5]

F. BornemannP. Nettesheim and C. Schütte, Quantum-classical molecular dynamics as an approximation to full quantum dynamics, J. Chem. Phys., 105 (1996), 1074-1083. doi: 10.1063/1.471952.

[6]

F. Bornemann and C. Schütte, On the singular limit of the quantum-classical molecular dynamics model, SIAM J. Appl. Math., 59 (1999), 1208-1224. doi: 10.1137/S0036139997318834.

[7]

R. Carles, On Fourier time-splitting methods for nonlinear Schrödinger equations in the semi-classical limit, SIAM J. Numer. Anal., 51 (2013), 3232-3258. doi: 10.1137/120892416.

[8]

T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics vo. 10, New York University, 2003. doi: 10.1090/cln/010.

[9]

K. Drukker, Basics of surface hopping in mixed quantum/classical simulations, J. Comput. Phys., 153 (1999), 225-272. doi: 10.1006/jcph.1999.6287.

[10]

I. Gasser and P. A. Markowich, Quantum hydrodynamics, Wigner transforms and the classical limit, Asymptotic Analysis, 14 (1997), 97-116.

[11]

P. GérardP. MarkowichN. Mauser and F. Poupaud, Homogenization Limits and Wigner transforms, Comm. Pure Appl. Math., 50 (1997), 323-379. doi: 10.1002/(SICI)1097-0312(199704)50:4<323::AID-CPA4>3.0.CO;2-C.

[12]

E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration: Structure-preserving Algorithms for Ordinary Differential Equations vo. 31, Springer, Heidelberg, 2010.

[13]

J. Hinze, MC-SCF. I. The multi-configurational self-consistent-field method, J. Chem. Phys., 59 (1973), 6424-6432. doi: 10.1063/1.1680022.

[14]

S. JinC. D. Levermore and D. W. McLaughlin, The behavior of solutions of the NLS equation in the semi-classical limit, Singular limits of dispersive waves, Springer US, 320 (1994), 235-255.

[15]

S. JinP. Markowich and C. Sparber, Mathematical and computational methods for semi-classical Schrödinger equations, Acta Num., 20 (2011), 121-209. doi: 10.1017/S0962492911000031.

[16]

S. Jin and Z. Zhou, A semi-Lagrangian time splitting method for the Schrödinger equation with vector potentials, Comm. Inf. Syst., 13 (2013), 247-289. doi: 10.4310/CIS.2013.v13.n3.a1.

[17]

C. Klein, Fourth order time-stepping for low dispersion Korteweg-de Vries and nonlinear Schrödinger equations, Electronic Trans. Num. Anal., 29 (2008), 116-135.

[18]

Z. KotlerE. Neria and A. Nitzan, Multiconfiguration time-dependent self-consistent field approximations in the numerical-solution of quantum dynamic problems, Comput. Phys. Comm., 63 (1991), 243-258.

[19]

Z. KotlerA. Nitzan and R. Kosloff, Multiconfiguration time-dependent self-consistent field approximation for curve crossing in presence of a bath. A Fast Fourier Transform study, Chem. Phys. Lett., 153 (1988), 483-489. doi: 10.1016/0009-2614(88)85247-3.

[20]

P. L. Lions and T. Paul, Sur les measures de Wigner, Rev. Math. Iberoamericana, 9 (1993), 553-618. doi: 10.4171/RMI/143.

[21]

N. Makri and W. H. Miller, Time-dependent self-consistent field (TDSCF) approximation for a reaction coordinate coupled to a harmonic bath: Single and multiple configuration treatments, J. Chem. Phys., 87 (1987), 5781-5787. doi: 10.1063/1.453501.

[22]

P. Markowich and N. Mauser, The classical limit of a self-consistent quantum-Vlasov equation in 3-D, Math. Models Methods Appl. Sci., 3 (1993), 109-124. doi: 10.1142/S0218202593000072.

[23]

P. A. MarkowichP. Pietra and C. Pohl, Numerical approximation of quadratic observables of Schrödinger type equations in the semi-classical limit, Numer. Math., 81 (1999), 595-630. doi: 10.1007/s002110050406.

[24]

C. SparberP. A. Markowich and N. J. Mauser, Wigner functions versus WKB-methods in multivalued geometrical optics, Asymptotic Analysis, 33 (2003), 153-187.

[25]

H. Spohn and S. Teufel, Adiabatic decoupling and time-dependent born oppenheimer theory, Comm. Math. Phys., 224 (2001), 113-132. doi: 10.1007/s002200100535.

[26]

X. Sun and W. H. Miller, Mixed semi-classical classical approaches to the dynamics of complex molecular systems, J. Chem. Phys., 106 (1997), 916-927.

[27]

A. Szepessy, Langevin molecular dynamics derived from Ehrenfest dynamics, Math. Models Methods Appl. Sci., 21 (2011), 2289-2334. doi: 10.1142/S0218202511005751.

[28]

E. Wigner, On the quantum correction for the thermodynamic equilibrium, The Collected Works of Eugene Paul Wigner, A/4 (1997), 110-120. doi: 10.1007/978-3-642-59033-7_9.

Figure 1.  The diagram of semi-classical limits: the iterated limit and the classical limit
Figure 2.  Reference solution: $\Delta x=\Delta y= \frac{2\pi}{32768}$ and $\Delta t=\frac{0.4}{4096}$. Upper picture: fix $\Delta y= \frac{2\pi}{32768}$ and $\Delta t=\frac{0.4}{4096}$, take $\Delta x=\frac{2\pi}{16384}$, $\frac{2\pi}{8192}$, $\frac{2\pi}{4096}$, $\frac{2\pi}{2048}$, $\frac{2\pi}{1024}$, $\frac{2\pi}{512}$, $\frac{2\pi}{256}$, $\frac{2\pi}{128}$, $\frac{2\pi}{64}$, $\frac{2\pi}{32}$, $\frac{2\pi}{16}$, $\frac{2\pi}{8}$. Lower Picture: fix $\Delta x= \frac{2\pi}{32768}$ and $\Delta t=\frac{0.4}{4096}$, take $\Delta y=\frac{2\pi}{16384}$, $\frac{2\pi}{8192}$, $\frac{2\pi}{4096}$, $\frac{2\pi}{2048}$, $\frac{2\pi}{1024}$, $\frac{2\pi}{512}$, $\frac{2\pi}{256}$, $\frac{2\pi}{128}$, $\frac{2\pi}{64}$, $\frac{2\pi}{32}$, $\frac{2\pi}{16}$, $\frac{2\pi}{8}$. These results show that, when $\delta=O(1)$ and $\varepsilon \ll 1$, the meshing strategy $\Delta x= O(\delta)$ and $\Delta y=O(\varepsilon )$ is sufficient for obtaining spectral accuracy.
Figure 3.  Reference solution: $\Delta x=\frac{2\pi}{512}$, $\Delta y= \frac{2\pi}{16348}$ and $\Delta t=\frac{0.4}{4096}$. SSP2: fix $\Delta x=\frac{2\pi}{512}$, $\Delta y= \frac{2\pi}{16348}$, take $\Delta t=\frac{0.4}{1024}$, $\frac{2\pi}{512}$, $\frac{2\pi}{256}$, $\frac{2\pi}{128}$, $\frac{2\pi}{64}$, $\frac{2\pi}{32}$, $\frac{2\pi}{16}$, $\frac{2\pi}{8}$. These results show that, when $\delta=O(1)$ and $\varepsilon \ll 1$, the SSP2 method is unconditionally stable and is second order accurate in time
Figure 4.  Fix $\Delta t=0.05$. For $\varepsilon =1/64$, $1/128$, $1/256$, $1/512$, $1/1024$, $1/2048$ and $1/{4096}$, $\Delta x=2\pi\varepsilon/16$, respectively. The reference solution is computed with the same $\Delta x$, but $\Delta t={\varepsilon }/{10}$. These results show that, $\varepsilon $-independent time steps can be taken to obtain accurate physical observables, but not accurate wave functions
Figure 5.  $\varepsilon=\frac{1}{512}$. First row: position density and current density of $\varphi^e$;
Figure 6.  $\varepsilon=\frac{1}{2048}$. First row: position density and flux density of $\varphi^e$; second row: position density and current density of $\psi^e$
Figure 7.  Fix $\Delta$ t=0.005. For $\varepsilon=\frac{1}{256}$, $\frac1{512}$, $\frac1{1024}$, $\frac1{2048}$, $\frac1{4096}$, $\Delta x=\frac{\varepsilon}{8}$, respectively. The reference solution is computed with the same $\Delta x$, but $\Delta t=\frac{0.54\varepsilon}{4}$. These results show that, $\varepsilon $-independent time steps can be taken to obtain accurate physical observables, but not accurate wave functions.
Figure 8.  Fix $\varepsilon=\frac{1}{256}$ and $\Delta t=\frac{0.4 \varepsilon}{16}$. Take $\Delta x= \frac{2\pi\varepsilon}{32}$, $\frac{2\pi\varepsilon}{16}$, $\frac{2\pi\varepsilon}{8}$, $\frac{2\pi\varepsilon}{4}$, $\frac{2\pi\varepsilon}{2}$ and $\frac{2\pi\varepsilon}{1}$ respectively. The reference solution is computed with the same $\Delta t$, but $\Delta x=\frac{2\pi\varepsilon}{64}$. These results show that, when $\delta=\varepsilon \ll 1$, the meshing strategy $\Delta x= O(\varepsilon )$ and $\Delta y=O(\varepsilon )$ is sufficient for obtaining spectral accuracy
Figure 9.  Fix $\varepsilon=\frac{1}{1024}$ and $\Delta x=\frac{2 \pi}{16}$. Take $\Delta t= \frac{0.4}{32}$, $\frac{0.4}{64}$, $\frac{0.4}{128}$, $\frac{0.4}{256}$, $\frac{0.4}{512}$ and $\frac{0.4}{1024}$, respectively. The reference solution is computed with the same $\Delta x$, but $\Delta t=\frac{0.4}{8192}$. These results show that, when $\delta=\varepsilon \ll 1$, the SSP2 method is unconditionally stable and is second order accurate in time
Figure 10.  Fix $\Delta t=\frac{0.4}{64}$. For $\delta=\frac1{256}$, $\frac1{512}$, $\frac1{1024}$, $\frac1{2048}$, $\frac1{4096}$, $\Delta x=2\pi\varepsilon/16$, respectively. The reference solution is computed with the same $\Delta x$, but $\Delta t=\frac{\delta}{10}$. These results show that, $\delta$-independent time steps can be taken to obtain accurate physical observables and classical coordinates, but not accurate wave functions
Figure 11.  Fix $\delta=\frac{1}{1024}$ and $\Delta x=\frac{2 \pi}{16}$. Take $\Delta t= \frac{0.4}{32}$, $\frac{0.4}{64}$, $\frac{0.4}{128}$, $\frac{0.4}{256}$, $\frac{0.4}{512}$ and $\frac{0.4}{1024}$, respectively. The reference solution is computed with the same $\Delta x$, but $\Delta t=\frac{0.4}{8192}$. These results show that, the SVSP2 method is unconditionally stable and is second order accurate in time
[1]

Vladimir S. Gerdjikov, Georgi Grahovski, Rossen Ivanov. On the integrability of KdV hierarchy with self-consistent sources. Communications on Pure & Applied Analysis, 2012, 11 (4) : 1439-1452. doi: 10.3934/cpaa.2012.11.1439

[2]

Yulan Wang. Global solvability in a two-dimensional self-consistent chemotaxis-Navier-Stokes system. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 329-349. doi: 10.3934/dcdss.2020019

[3]

Harald Markum, Rainer Pullirsch. Classical and quantum chaos in fundamental field theories. Conference Publications, 2003, 2003 (Special) : 596-603. doi: 10.3934/proc.2003.2003.596

[4]

Giuseppe Marmo, Giuseppe Morandi, Narasimhaiengar Mukunda. The Hamilton-Jacobi theory and the analogy between classical and quantum mechanics. Journal of Geometric Mechanics, 2009, 1 (3) : 317-355. doi: 10.3934/jgm.2009.1.317

[5]

Zhong Tan, Huaqiao Wang, Yucong Wang. Time-splitting methods to solve the Hall-MHD systems with Lévy noises. Kinetic & Related Models, 2019, 12 (1) : 243-267. doi: 10.3934/krm.2019011

[6]

Dongsheng Yin, Min Tang, Shi Jin. The Gaussian beam method for the wigner equation with discontinuous potentials. Inverse Problems & Imaging, 2013, 7 (3) : 1051-1074. doi: 10.3934/ipi.2013.7.1051

[7]

Palash Sarkar, Shashank Singh. A unified polynomial selection method for the (tower) number field sieve algorithm. Advances in Mathematics of Communications, 2019, 13 (3) : 435-455. doi: 10.3934/amc.2019028

[8]

Orazio Muscato, Wolfgang Wagner. A stochastic algorithm without time discretization error for the Wigner equation. Kinetic & Related Models, 2019, 12 (1) : 59-77. doi: 10.3934/krm.2019003

[9]

Roberta Bosi. Classical limit for linear and nonlinear quantum Fokker-Planck systems. Communications on Pure & Applied Analysis, 2009, 8 (3) : 845-870. doi: 10.3934/cpaa.2009.8.845

[10]

Liejune Shiau, Roland Glowinski. Operator splitting method for friction constrained dynamical systems. Conference Publications, 2005, 2005 (Special) : 806-815. doi: 10.3934/proc.2005.2005.806

[11]

Gerasimenko Viktor. Heisenberg picture of quantum kinetic evolution in mean-field limit. Kinetic & Related Models, 2011, 4 (1) : 385-399. doi: 10.3934/krm.2011.4.385

[12]

Christopher M. Kellett. Classical converse theorems in Lyapunov's second method. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2333-2360. doi: 10.3934/dcdsb.2015.20.2333

[13]

Jean-Claude Zambrini. Stochastic deformation of classical mechanics. Conference Publications, 2013, 2013 (special) : 807-813. doi: 10.3934/proc.2013.2013.807

[14]

Jamie Cruz, Miguel Gutiérrez. Spiral motion in classical mechanics. Conference Publications, 2009, 2009 (Special) : 191-197. doi: 10.3934/proc.2009.2009.191

[15]

Cristina Stoica. An approximation theorem in classical mechanics. Journal of Geometric Mechanics, 2016, 8 (3) : 359-374. doi: 10.3934/jgm.2016011

[16]

Thomas Chen, Ryan Denlinger, Nataša Pavlović. Moments and regularity for a Boltzmann equation via Wigner transform. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 4979-5015. doi: 10.3934/dcds.2019204

[17]

Figen Özpinar, Fethi Bin Muhammad Belgacem. The discrete homotopy perturbation Sumudu transform method for solving partial difference equations. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 615-624. doi: 10.3934/dcdss.2019039

[18]

Petra Csomós, Hermann Mena. Fourier-splitting method for solving hyperbolic LQR problems. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 17-46. doi: 10.3934/naco.2018002

[19]

Zhili Ge, Gang Qian, Deren Han. Global convergence of an inexact operator splitting method for monotone variational inequalities. Journal of Industrial & Management Optimization, 2011, 7 (4) : 1013-1026. doi: 10.3934/jimo.2011.7.1013

[20]

Lijian Jiang, Craig C. Douglas. Analysis of an operator splitting method in 4D-Var. Conference Publications, 2009, 2009 (Special) : 394-403. doi: 10.3934/proc.2009.2009.394

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (9)
  • HTML views (8)
  • Cited by (2)

Other articles
by authors

[Back to Top]