[1] |
D. Ambrosi and F. Mollica,
On the mechanics of a growing tumor, International Journal of Engineering Science, 40 (2002), 1297-1316.
doi: 10.1016/S0020-7225(02)00014-9.
|
[2] |
R. Araujo and D. McElwain,
A history of the study of solid tumour growth: The contribution of mathematical modelling, Bulletin of Mathematical Biology, 66 (2004), 1039-1091.
doi: 10.1016/j.bulm.2003.11.002.
|
[3] |
E. Baratchart, S. Benzekry, A. Bikfalvi, T. Colin, L. S. Cooley, R. Pineau, E. J. Ribot, O. Saut and W. Souleyreau, Computational modelling of metastasis development in renal cell carcinoma, PLoS Computational Biology, 11 (2015), e1004626.
doi: 10.1371/journal.pcbi.1004626.
|
[4] |
H. Berestycki, B. Nicolaenko and B. Scheurer,
Traveling wave solutions to combustion models and their singular limits, SIAM Journal on Mathematical Analysis, 16 (1985), 1207-1242.
doi: 10.1137/0516088.
|
[5] |
A. Brú, S. Albertos, J.L. Subiza, J.L. García-Asenjo and I. Brú,
The universal dynamics of tumor growth, Biophysical Journal, 85 (2003), 2948-2961.
|
[6] |
H. Byrne and M. Chaplain,
Growth of necrotic tumors in the presence and absence of inhibitors, Mathematical Biosciences, 135 (1996), 187-216.
doi: 10.1016/0025-5564(96)00023-5.
|
[7] |
H. Byrne and D. Drasdo,
Individual-based and continuum models of growing cell populations: A comparison, Journal of Mathematical Biology, 58 (2009), 657-687.
doi: 10.1007/s00285-008-0212-0.
|
[8] |
H. Byrne and L. Preziosi,
Modelling solid tumour growth using the theory of mixtures, Mathematical Medicine and Biology, 20 (2003), 341-366.
doi: 10.1093/imammb/20.4.341.
|
[9] |
H. Byrne and M.A. Chaplain,
Modelling the role of cell-cell adhesion in the growth and development of carcinomas, Mathematical and Computer Modelling, 24 (1996), 1-17.
doi: 10.1016/S0895-7177(96)00174-4.
|
[10] |
P. Ciarletta, L. Foret and M. Ben~Amar,
The radial growth phase of malignant melanoma: Muti-phase modelling, numerical simulation and linear stability, J. R. Soc. Interface, 8 (2011), 345-368.
doi: 10.1098/rsif.2010.0285.
|
[11] |
E. N. Dancer, D. Hilhorst, M. Mimura and L. A. Peletier, Spatial segregation limit of a competition-diffusion system, European J. Appl. Math., 10 (1999), 97–115, URL http://dx.doi.org/10.1017/S0956792598003660.
doi: 10.1017/S0956792598003660.
|
[12] |
D. Drasdo and S. Hoehme, Modeling the impact of granular embedding media, and pulling versus pushing cells on growing cell clones, New Journal of Physics, 14 (2012), 055025.
doi: 10.1088/1367-2630/14/5/055025.
|
[13] |
A. Friedman,
A hierarchy of cancer models and their mathematical challenges, Discrete and Continuous Dynamical Systems Series B, 4 (2004), 147-159.
doi: 10.3934/dcdsb.2004.4.147.
|
[14] |
H. Greenspan,
On the growth and stability of cell cultures and solid tumors, Journal of Theoretical Biology, 56 (1976), 229-242.
doi: 10.1016/S0022-5193(76)80054-9.
|
[15] |
M. Kowalczyk, B. Perthame and N. Vauchelet,
Transversal instability for the thermodiffusive reaction-diffusion system, Chinese Annals of Mathematics, Series B, 36 (2015), 871-882.
doi: 10.1007/s11401-015-0981-x.
|
[16] |
R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems, vol. 31, Cambridge university press, 2002.
doi: 10.1017/CBO9780511791253.
|
[17] |
M. Mimura, H. Sakaguchi and M. Matsushita,
Reaction diffusion modelling of bacterial colony patterns, Physica A, 282 (2000), 283-303.
doi: 10.1016/S0378-4371(00)00085-6.
|
[18] |
B. Perthame, F. Quirós, M. Tang and N. Vauchelet,
Derivation of a hele-shaw type system from a cell model with active motion, Interfaces and Free Boundaries, 16 (2014), 489-508.
doi: 10.4171/IFB/327.
|
[19] |
B. Perthame, F. Quirós and J. L. Vázquez, The hele-shaw asymptotics for mechanical models of tumor growth, ARMA, 212 (2014), 93–127, URL http://hal.upmc.fr/docs/00/83/19/32/PDF/Hele_Shaw.pdf.
doi: 10.1007/s00205-013-0704-y.
|
[20] |
L. Preziosi, Cancer Modelling and Simulation, CRC Press, 2003.
doi: 10.1201/9780203494899.
|
[21] |
I. Ramis-Conde, D. Drasdo, A.R. Anderson and M.A. Chaplain,
Modeling the influence of the e-cadherin-$β$-catenin pathway in cancer cell invasion: A multiscale approach, Biophysical Journal, 95 (2008), 155-165.
|
[22] |
J. Ranft, M. Basan, J. Elgeti, J.-F. Joanny, J. Prost and F. Jülicher,
Fluidization of tissues by cell division and apoptosis, Proceedings of the National Academy of Sciences, 107 (2010), 20863-20868.
doi: 10.1073/pnas.1011086107.
|
[23] |
T. Roose, S.J. Chapman and P.K. Maini,
Mathematical models of avascular tumor growth, SIAM Review, 49 (2007), 179-208.
doi: 10.1137/S0036144504446291.
|
[24] |
P. G. Saffman and G. Taylor, The penetration of a fluid into a porous medium or heleshaw cell containing a more viscous liquid, in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 245, The Royal Society, 1958,312–329
doi: 10.1098/rspa.1958.0085.
|
[25] |
J.A. Sherratt and M.A. Chaplain,
A new mathematical model for avascular tumour growth, Journal of Mathematical Biology, 43 (2001), 291-312.
doi: 10.1007/s002850100088.
|
[26] |
M. Tang, N. Vauchelet, I. Cheddadi, I. Vignon-Clementel, D. Drasdo and B. Perthame,
Composite waves for a cell population system modeling tumor growth and invasion, Chinese Annals of Mathematics, Series B, 34 (2013), 295-318.
doi: 10.1007/s11401-013-0761-4.
|