• Previous Article
    Escaping the trap of 'blocking': A kinetic model linking economic development and political competition
  • KRM Home
  • This Issue
  • Next Article
    Perturbative theory for the Boltzmann equation in bounded domains with different boundary conditions
June  2017, 10(2): 373-421. doi: 10.3934/krm.2017015

Dispersion relations in cold magnetized plasmas

Institut Mathématique de Rennes, Campus de Beaulieu, 263 avenue du Général Leclerc CS 74205,35042 Rennes Cedex, France

Received  December 2015 Revised  June 2016 Published  November 2016

Fund Project: This work received the support of the Agence Nationale de la Recherche: projet NOSEVOL (ANR 2011 BS01019 01) and ANR blanc DYFICOLTI

Starting from kinetic models of cold magnetized collisionless plasmas, we provide a complete description of the characteristic variety sustaining electromagnetic wave propagation. As in [4, 13, 17], the analysis is based on some asymptotic calculus exploiting the presence at the level of dimensionless relativistic Vlasov-Maxwell equations of a large parameter: the electron gyrofrequency. The method is inspired from geometric optics [29, 33]. It allows to unify all the preceding results [8, 12, 38, 31, 37, 40], while incorporating new aspects. Specifically, the non trivial effects [5, 9, 10, 24] of the spatial variations of the background density, temperature and magnetic field are exhibited. In this way, a comprehensive overview of the dispersion relations becomes available, with important possible applications in plasma physics [7, 28, 30].

Citation: Christophe Cheverry, Adrien Fontaine. Dispersion relations in cold magnetized plasmas. Kinetic & Related Models, 2017, 10 (2) : 373-421. doi: 10.3934/krm.2017015
References:
[1]

E. V. Appleton, Wireless studies of the ionosphere, J. Inst. Electr. Eng, 71 (1932), 642-650.   Google Scholar

[2]

A. BackT. HattoriS. LabrunieJ.-R. Roche and P. Bertrand, Electromagnetic wave propagation and absorption in magnetised plasmas: variational formulations and domain decomposition, ESAIM Math. Model. Numer. Anal., 49 (2015), 1239-1260.  doi: 10.1051/m2an/2015009.  Google Scholar

[3]

J. BortnikR. M. Thorne and N. P. Meredith, The unexpected origin of plasmaspheric hiss from discrete chorus emissions, Nature, 452 (2008), 62-66.  doi: 10.1038/nature06741.  Google Scholar

[4]

M. Bostan and C. Negulescu, Mathematical models for strongly magnetized plasmas with mass disparate particles, Discrete Contin. Dyn. Syst. Ser. B, 15 (2011), 513-544.  doi: 10.3934/dcdsb.2011.15.513.  Google Scholar

[5]

M. Braun, Mathematical remarks on the Van Allen radiation belt: A survey of old and new results, SIAM Rev., 23 (1981), 61-93.  doi: 10.1137/1023005.  Google Scholar

[6]

J. Y. Chemin, B. Desjardins, I. Gallagher and E. Grenier, Mathematical Geophysics Volume 32 of Oxford Lecture Series in Mathematics and its Applications The Clarendon Press Oxford University Press, Oxford, 2006. An introduction to rotating fluids and the Navier-Stokes equations.  Google Scholar

[7]

C. Cheverry, Can One Hear Whistler Waves?, Comm. Math. Phys, 338 (2015), 641-703.  doi: 10.1007/s00220-015-2389-6.  Google Scholar

[8]

R. Ciurea-BorciaG. MatthieussentE. Le BelF. Simonet and J. Solomon, Oblique whistler waves generated in cold plasma by relativistic electron beams, Physics of plasmas, 7 (2000), 359-370.  doi: 10.1063/1.873804.  Google Scholar

[9]

M. H. Denton, J. E. Borovsky, and T. E. Cayton, A density temperature description of the outer electron radiation belt during geomagnetic storms Journal of Geophysical Research: Space Physics 115 (2010). doi: 10.1029/2009JA014183.  Google Scholar

[10]

B. Després L.-M. Imbert-Gérard and R. Weder, Hybrid resonance of Maxwell's equations in slab geometry, J. Math. Pures Appl.(9), 101 (2014), 623-659.  doi: 10.1016/j.matpur.2013.10.001.  Google Scholar

[11]

L. C. Evans, Partial Differential Equations Graduate Studies in Mathematics, American Mathematical Society, 2010. doi: 10.1090/gsm/019.  Google Scholar

[12]

R. Fitzpatrick, Plasma Physics: An Introduction Hardcover, 2014. Google Scholar

[13]

E. Frénod and E. Sonnendrücker, Long time behavior of the two-dimensional Vlasov equation with a strong external magnetic field, Math. Models Methods Appl. Sci., 10 (2000), 539-553.  doi: 10.1142/S021820250000029X.  Google Scholar

[14]

P. GhendrihM. Hauray and A. Nouri, Derivation of a gyrokinetic model. Existence and uniqueness of specific stationary solution, Kinetic and Related Models, 2 (2009), 707-725.  doi: 10.3934/krm.2009.2.707.  Google Scholar

[15]

C. Gillmor, Wilhelm Altar, Edward Appleton, and the Magneto-Ionic Theory, Proceedings of the American Philosophical Society, 126 (1982), 395-440.   Google Scholar

[16]

R. T. Glassey and J. W. Schaeffer, Global existence for the relativistic Vlasov-Maxwell system with nearly neutral initial data, Comm. Math. Phys., 119 (1988), 353-384.  doi: 10.1007/BF01218078.  Google Scholar

[17]

F. Golse and L. Saint-Raymond, The Vlasov-Poisson system with strong magnetic field, J. Math. Pures Appl. (9), 78 (1999), 791-817.  doi: 10.1016/S0021-7824(99)00021-5.  Google Scholar

[18]

F. Golse and L. Saint-Raymond, The Vlasov-Poisson system with strong magnetic field in quasineutral regime, Math. Models Methods Appl. Sci., 13 (2003), 661-714.  doi: 10.1142/S0218202503002647.  Google Scholar

[19]

D. Han-Kwan and F. Rousset, Quasineutral limit for Vlasov-Poisson with Penrose stable data, Ann. Sci. Ecole Norm. Sup. (2015). Google Scholar

[20]

D. R. Hartree, The propagation of electromagnetic waves in a stratified medium, Mathematical Proceedings of the Cambridge Philosophical Society, 25 (1929), 97-120.  doi: 10.1017/S0305004100018600.  Google Scholar

[21]

R. A. Helliwell, Whistlers and Related Ionospheric Phenomena Stanford University Press, 1965. Google Scholar

[22]

C. F. Kennel, Low frequency whistler mode, Journal of Plasma Physics, 71 (1966), 1-28.  doi: 10.1063/1.1761588.  Google Scholar

[23]

C. F. Kennel and H. E. Petschek, Limit on stably trapped particles, Journal of Geophysical Research, 9 (1966), 2190-2202.   Google Scholar

[24]

E. Le Bel, Etude Physique et Numérique de la Saturation Des Ceintures de Van Allen Ph. D thesis, Paris 11 Orsay, 2001. Google Scholar

[25]

W. Li, J. Bortnik, R. M. Thorne, Y. Nishimura, V. Angelopoulos and L. Chen, Modulation of whistler mode chorus waves: 2. Role of density variations Journal of Geophysical Research 116 (2011). doi: 10.1029/2010JA016313.  Google Scholar

[26]

Z. Lin and W. A. Strauss, Linear stability and instability of relativistic Vlasov-Maxwell systems, Comm. Pure Appl. Math., 60 (2007), 724-787.  doi: 10.1002/cpa.20158.  Google Scholar

[27]

K. Liu, S. P. Gary and D. Winske, Excitation of banded whistler waves in the magnetosphere Geophysical Research Letters 38 (2011). doi: 10.1029/2011GL048375.  Google Scholar

[28]

J. D. MeniettiJ. S. PickettD. A. Gurnett and J. D. Scudder, Electrostatic electron cyclotron waves observed by the plasma wave instrument on board Polar, Journal of Geophysical Research, 106 (2001), 6043-6057.  doi: 10.1029/2000JA003016.  Google Scholar

[29]

G. Métivier, The mathematics of nonlinear optics, Handbook of Differential Equations: Evolutionary Equations, 5 (2009), 169-313.  doi: 10.1016/S1874-5717(08)00210-7.  Google Scholar

[30]

D. C. Montgomery and D. A. Tidman, Plasma Kinetic Theory McGraw-Hill Book Company, 1964. Google Scholar

[31]

M. E. OakesR. B. MichieK. H. Tsui and J. E. Copeland, Cold plasma dispersion surfaces, Journal of Plasma Physics, 21 (1979), 205-224.  doi: 10.1017/S0022377800021784.  Google Scholar

[32]

Y. Omura, M. Hikishima, Y. Katoh, D. Summers and S. Yagitani, Nonlinear mechanisms of lower-band and upper-band VLF chorus emissions in the magnetosphere Journal of Geophysical Research 114 (2009). doi: 10.1029/2009JA014206.  Google Scholar

[33]

J. Rauch, Hyperbolic Partial Differential Equations and Geometric Optics Graduate Studies in Mathematics, American Mathematical Society, 2012. doi: 10.1090/gsm/133.  Google Scholar

[34]

O. Santolik, D. A. Gurnett, J. S. Pickett, J. M. Parrot and N. Cornilleau-Wehrlin, Spatio-temporal structure of storm-time chorus Journal of Geophysical Research 108 (2003), SMP 7-1. doi: 10.1029/2002JA009791.  Google Scholar

[35]

S. S. Sazhin and M. Hayakawa, Magnetospheric chorus emissions: A review, Planetary and Space Science, 40 (1992), 681-697.  doi: 10.1016/0032-0633(92)90009-D.  Google Scholar

[36]

D. Sidhu and H. Unz, The magneto-ionic theory for drifting plasma: The whistler mode, Transactions of the Kansas Academy of Science, 70 (1967), 432-450.  doi: 10.2307/3627595.  Google Scholar

[37]

T. H. Stix, Waves in Plasma American Institute of Physics, 1992. Google Scholar

[38]

V. Harid, Coherent Interactions between Whistler Mode Waves and Energetic Electrons in the Earth's Radiation Belts Ph. D thesis, Stanford, 2015. Google Scholar

[39]

R. Woollett, Electromagnetic Wave Propagation in a Cold, Collisionless Atomic Hydrogen Plasma Nasa technical note, Nasa TN D-2071,1964. Google Scholar

[40]

F. XiaoR. M. Thorne and D. Summers, Intsability of electromagnetic R-mode waves in a relativistic plasma, Physics of Plasmas, 5 (1998), 2489-2497.  doi: 10.1063/1.872932.  Google Scholar

[41]

K. YamaguchiT. MatsumuroY. Omura and D. Nunn, Ray tracing of whistler-mode chorus elements, Ann. Geophys., 31 (2013), 665-673.   Google Scholar

show all references

References:
[1]

E. V. Appleton, Wireless studies of the ionosphere, J. Inst. Electr. Eng, 71 (1932), 642-650.   Google Scholar

[2]

A. BackT. HattoriS. LabrunieJ.-R. Roche and P. Bertrand, Electromagnetic wave propagation and absorption in magnetised plasmas: variational formulations and domain decomposition, ESAIM Math. Model. Numer. Anal., 49 (2015), 1239-1260.  doi: 10.1051/m2an/2015009.  Google Scholar

[3]

J. BortnikR. M. Thorne and N. P. Meredith, The unexpected origin of plasmaspheric hiss from discrete chorus emissions, Nature, 452 (2008), 62-66.  doi: 10.1038/nature06741.  Google Scholar

[4]

M. Bostan and C. Negulescu, Mathematical models for strongly magnetized plasmas with mass disparate particles, Discrete Contin. Dyn. Syst. Ser. B, 15 (2011), 513-544.  doi: 10.3934/dcdsb.2011.15.513.  Google Scholar

[5]

M. Braun, Mathematical remarks on the Van Allen radiation belt: A survey of old and new results, SIAM Rev., 23 (1981), 61-93.  doi: 10.1137/1023005.  Google Scholar

[6]

J. Y. Chemin, B. Desjardins, I. Gallagher and E. Grenier, Mathematical Geophysics Volume 32 of Oxford Lecture Series in Mathematics and its Applications The Clarendon Press Oxford University Press, Oxford, 2006. An introduction to rotating fluids and the Navier-Stokes equations.  Google Scholar

[7]

C. Cheverry, Can One Hear Whistler Waves?, Comm. Math. Phys, 338 (2015), 641-703.  doi: 10.1007/s00220-015-2389-6.  Google Scholar

[8]

R. Ciurea-BorciaG. MatthieussentE. Le BelF. Simonet and J. Solomon, Oblique whistler waves generated in cold plasma by relativistic electron beams, Physics of plasmas, 7 (2000), 359-370.  doi: 10.1063/1.873804.  Google Scholar

[9]

M. H. Denton, J. E. Borovsky, and T. E. Cayton, A density temperature description of the outer electron radiation belt during geomagnetic storms Journal of Geophysical Research: Space Physics 115 (2010). doi: 10.1029/2009JA014183.  Google Scholar

[10]

B. Després L.-M. Imbert-Gérard and R. Weder, Hybrid resonance of Maxwell's equations in slab geometry, J. Math. Pures Appl.(9), 101 (2014), 623-659.  doi: 10.1016/j.matpur.2013.10.001.  Google Scholar

[11]

L. C. Evans, Partial Differential Equations Graduate Studies in Mathematics, American Mathematical Society, 2010. doi: 10.1090/gsm/019.  Google Scholar

[12]

R. Fitzpatrick, Plasma Physics: An Introduction Hardcover, 2014. Google Scholar

[13]

E. Frénod and E. Sonnendrücker, Long time behavior of the two-dimensional Vlasov equation with a strong external magnetic field, Math. Models Methods Appl. Sci., 10 (2000), 539-553.  doi: 10.1142/S021820250000029X.  Google Scholar

[14]

P. GhendrihM. Hauray and A. Nouri, Derivation of a gyrokinetic model. Existence and uniqueness of specific stationary solution, Kinetic and Related Models, 2 (2009), 707-725.  doi: 10.3934/krm.2009.2.707.  Google Scholar

[15]

C. Gillmor, Wilhelm Altar, Edward Appleton, and the Magneto-Ionic Theory, Proceedings of the American Philosophical Society, 126 (1982), 395-440.   Google Scholar

[16]

R. T. Glassey and J. W. Schaeffer, Global existence for the relativistic Vlasov-Maxwell system with nearly neutral initial data, Comm. Math. Phys., 119 (1988), 353-384.  doi: 10.1007/BF01218078.  Google Scholar

[17]

F. Golse and L. Saint-Raymond, The Vlasov-Poisson system with strong magnetic field, J. Math. Pures Appl. (9), 78 (1999), 791-817.  doi: 10.1016/S0021-7824(99)00021-5.  Google Scholar

[18]

F. Golse and L. Saint-Raymond, The Vlasov-Poisson system with strong magnetic field in quasineutral regime, Math. Models Methods Appl. Sci., 13 (2003), 661-714.  doi: 10.1142/S0218202503002647.  Google Scholar

[19]

D. Han-Kwan and F. Rousset, Quasineutral limit for Vlasov-Poisson with Penrose stable data, Ann. Sci. Ecole Norm. Sup. (2015). Google Scholar

[20]

D. R. Hartree, The propagation of electromagnetic waves in a stratified medium, Mathematical Proceedings of the Cambridge Philosophical Society, 25 (1929), 97-120.  doi: 10.1017/S0305004100018600.  Google Scholar

[21]

R. A. Helliwell, Whistlers and Related Ionospheric Phenomena Stanford University Press, 1965. Google Scholar

[22]

C. F. Kennel, Low frequency whistler mode, Journal of Plasma Physics, 71 (1966), 1-28.  doi: 10.1063/1.1761588.  Google Scholar

[23]

C. F. Kennel and H. E. Petschek, Limit on stably trapped particles, Journal of Geophysical Research, 9 (1966), 2190-2202.   Google Scholar

[24]

E. Le Bel, Etude Physique et Numérique de la Saturation Des Ceintures de Van Allen Ph. D thesis, Paris 11 Orsay, 2001. Google Scholar

[25]

W. Li, J. Bortnik, R. M. Thorne, Y. Nishimura, V. Angelopoulos and L. Chen, Modulation of whistler mode chorus waves: 2. Role of density variations Journal of Geophysical Research 116 (2011). doi: 10.1029/2010JA016313.  Google Scholar

[26]

Z. Lin and W. A. Strauss, Linear stability and instability of relativistic Vlasov-Maxwell systems, Comm. Pure Appl. Math., 60 (2007), 724-787.  doi: 10.1002/cpa.20158.  Google Scholar

[27]

K. Liu, S. P. Gary and D. Winske, Excitation of banded whistler waves in the magnetosphere Geophysical Research Letters 38 (2011). doi: 10.1029/2011GL048375.  Google Scholar

[28]

J. D. MeniettiJ. S. PickettD. A. Gurnett and J. D. Scudder, Electrostatic electron cyclotron waves observed by the plasma wave instrument on board Polar, Journal of Geophysical Research, 106 (2001), 6043-6057.  doi: 10.1029/2000JA003016.  Google Scholar

[29]

G. Métivier, The mathematics of nonlinear optics, Handbook of Differential Equations: Evolutionary Equations, 5 (2009), 169-313.  doi: 10.1016/S1874-5717(08)00210-7.  Google Scholar

[30]

D. C. Montgomery and D. A. Tidman, Plasma Kinetic Theory McGraw-Hill Book Company, 1964. Google Scholar

[31]

M. E. OakesR. B. MichieK. H. Tsui and J. E. Copeland, Cold plasma dispersion surfaces, Journal of Plasma Physics, 21 (1979), 205-224.  doi: 10.1017/S0022377800021784.  Google Scholar

[32]

Y. Omura, M. Hikishima, Y. Katoh, D. Summers and S. Yagitani, Nonlinear mechanisms of lower-band and upper-band VLF chorus emissions in the magnetosphere Journal of Geophysical Research 114 (2009). doi: 10.1029/2009JA014206.  Google Scholar

[33]

J. Rauch, Hyperbolic Partial Differential Equations and Geometric Optics Graduate Studies in Mathematics, American Mathematical Society, 2012. doi: 10.1090/gsm/133.  Google Scholar

[34]

O. Santolik, D. A. Gurnett, J. S. Pickett, J. M. Parrot and N. Cornilleau-Wehrlin, Spatio-temporal structure of storm-time chorus Journal of Geophysical Research 108 (2003), SMP 7-1. doi: 10.1029/2002JA009791.  Google Scholar

[35]

S. S. Sazhin and M. Hayakawa, Magnetospheric chorus emissions: A review, Planetary and Space Science, 40 (1992), 681-697.  doi: 10.1016/0032-0633(92)90009-D.  Google Scholar

[36]

D. Sidhu and H. Unz, The magneto-ionic theory for drifting plasma: The whistler mode, Transactions of the Kansas Academy of Science, 70 (1967), 432-450.  doi: 10.2307/3627595.  Google Scholar

[37]

T. H. Stix, Waves in Plasma American Institute of Physics, 1992. Google Scholar

[38]

V. Harid, Coherent Interactions between Whistler Mode Waves and Energetic Electrons in the Earth's Radiation Belts Ph. D thesis, Stanford, 2015. Google Scholar

[39]

R. Woollett, Electromagnetic Wave Propagation in a Cold, Collisionless Atomic Hydrogen Plasma Nasa technical note, Nasa TN D-2071,1964. Google Scholar

[40]

F. XiaoR. M. Thorne and D. Summers, Intsability of electromagnetic R-mode waves in a relativistic plasma, Physics of Plasmas, 5 (1998), 2489-2497.  doi: 10.1063/1.872932.  Google Scholar

[41]

K. YamaguchiT. MatsumuroY. Omura and D. Nunn, Ray tracing of whistler-mode chorus elements, Ann. Geophys., 31 (2013), 665-673.   Google Scholar

Figure 1.  Spherical coordinates of $p\in {{\mathbb{R}}^{3}}$ after straigntening
Figure 2.  Spherical coordinates of $ \xi \in \mathbb{R}^3 $ after straigntening
Figure 3.  Parallel propagation ($\varpi=0$). Standard nomenclature. $ \text{V}_{\! r} (\mathbf{x}, 0)$ (in orange), $ {{\text{V}}_{l}}(\mathbf{x},0)$ (in blue-green) and $ \text{V}_{\! 0} (\mathbf{x}, 0)$ (in black)
Figure 6.  Oblique propagation for angles $ \varpi \in \, ] 0, \pi / 2] \, $: -Ordinary waves ${{\text{V}}_{o}}(\mathbf{x},\varpi )=\text{V}_{o}^{-}(\mathbf{x},\varpi )\sqcup \text{V}_{\text{o}}^{\text{+}}(\mathbf{x},\varpi )$ in blue; -Extraordinary waves ${{\text{V}}_{x}}(\mathbf{x},\varpi )=\text{V}_{x}^{-}(\mathbf{x},\varpi )\sqcup \text{V}_{\text{x}}^{\text{+}}(\mathbf{x},\varpi )$ in red
Figure 7.  Parallel propagation ($\varpi=0$). Mixing of $\text{V}_{\! x} (\mathbf{x}, 0) \, $ and $\text{V}_{\! o} (\mathbf{x}, 0) \, $
Figure 8.  Evolution of ${{\text{V}}_{x}}(\mathbf{x},\varpi )\text{ and }{{\text{V}}_{o}}(\mathbf{x},\varpi )$ in function of $\varpi$. Asymptotic behaviour when $\varpi \rightarrow 0$ (see $\varpi =0.1 \sim 0$) and $\varpi \rightarrow \pi / 2 $ (see $ \varpi=1.47 \sim \pi / 2 $
Figure 9.  The characteristic variety in the variables $(\tau, \varpi, r)$. From left to right: $ \mathcal{V}_{\text{o}}^{\text{-}}(\mathbf{x}),\text{ }\mathcal{V}_{\text{x}}^{\text{-}}(\mathbf{x}),\text{ }\mathcal{V}_{\text{o}}^{\text{+}}(\mathbf{x})$ and $ \mathcal{V}_{\text{x}}^{\text{+}}(\mathbf{x})$
Figure 5.  Graph of $ g_+ (\mathbf{x}, \varpi, \cdot) $
Figure 4.  Graph of $ g_- (\mathbf{x}, \varpi, \cdot) $
Figure 10.  Ordinary resonance cone. $ {{\mathcal{V}}_{o}}(\mathbf{x},\tau )\text{ for}\ \tau \in [0,\min ({{\mathbf{b}}_{e}}(\mathbf{x}),\kappa (\mathbf{x}))]$
Figure 11.  Extraordinary resonance cone. $ \mathcal{V} _{\! x} (\mathbf{x}, \tau)$ for $\tau \in [\max(\mathbf{b}_e(\mathbf{x}), \kappa(\mathbf{x})), \sqrt{\mathbf{b}_e(\mathbf{x})^2+\kappa(\mathbf{x})^2}]$
Figure 12.  The extraordinary sphere nested into the ordinary sphere, for $\tau \gtrsim \tau_0^+ (\mathbf{x}) $
Figure 13.  Asymptotic merge of the ordinary and extraordinary spheres, for $\tau \gg \tau_0^+ (\mathbf{x}) $
Figure 14.  Parallel propagation ($\varpi=0$) with $\tau$ written as a function of $r$. Mixing of $\text{V}_{\! x} (\mathbf{x}, 0) $ and $\text{V}_{\! o} (\mathbf{x}, 0)$
Figure 15.  Spectrogram of chorus emission
Figure 16.  The characteristic variety as a graph of functions depending on $ \tau $
Figure 17.  Whistler-mode chorus: Spectrogram of the electromagnetic field [34]
[1]

B. L. G. Jonsson. Wave splitting of Maxwell's equations with anisotropic heterogeneous constitutive relations. Inverse Problems & Imaging, 2009, 3 (3) : 405-452. doi: 10.3934/ipi.2009.3.405

[2]

Yonggeun Cho, Tohru Ozawa. On radial solutions of semi-relativistic Hartree equations. Discrete & Continuous Dynamical Systems - S, 2008, 1 (1) : 71-82. doi: 10.3934/dcdss.2008.1.71

[3]

Mohammad Asadzadeh, Piotr Kowalczyk, Christoffer Standar. On hp-streamline diffusion and Nitsche schemes for the relativistic Vlasov-Maxwell system. Kinetic & Related Models, 2019, 12 (1) : 105-131. doi: 10.3934/krm.2019005

[4]

Jimmy Garnier, FranÇois Hamel, Lionel Roques. Transition fronts and stretching phenomena for a general class of reaction-dispersion equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 743-756. doi: 10.3934/dcds.2017031

[5]

Sergiu Klainerman, Gigliola Staffilani. A new approach to study the Vlasov-Maxwell system. Communications on Pure & Applied Analysis, 2002, 1 (1) : 103-125. doi: 10.3934/cpaa.2002.1.103

[6]

Maxime Herda, Luis Miguel Rodrigues. Anisotropic Boltzmann-Gibbs dynamics of strongly magnetized Vlasov-Fokker-Planck equations. Kinetic & Related Models, 2019, 12 (3) : 593-636. doi: 10.3934/krm.2019024

[7]

Thomas Leroy. Relativistic transfer equations: Comparison principle and convergence to the non-equilibrium regime. Kinetic & Related Models, 2015, 8 (4) : 725-763. doi: 10.3934/krm.2015.8.725

[8]

Yonggeun Cho, Tohru Ozawa, Hironobu Sasaki, Yongsun Shim. Remarks on the semirelativistic Hartree equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (4) : 1277-1294. doi: 10.3934/dcds.2009.23.1277

[9]

Isabelle Choquet, Brigitte Lucquin-Desreux. Non equilibrium ionization in magnetized two-temperature thermal plasma. Kinetic & Related Models, 2011, 4 (3) : 669-700. doi: 10.3934/krm.2011.4.669

[10]

Toan T. Nguyen, Truyen V. Nguyen, Walter A. Strauss. Global magnetic confinement for the 1.5D Vlasov-Maxwell system. Kinetic & Related Models, 2015, 8 (1) : 153-168. doi: 10.3934/krm.2015.8.153

[11]

Charles L. Epstein, Leslie Greengard, Thomas Hagstrom. On the stability of time-domain integral equations for acoustic wave propagation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4367-4382. doi: 10.3934/dcds.2016.36.4367

[12]

Dongbing Zha, Yi Zhou. The lifespan for quasilinear wave equations with multiple propagation speeds in four space dimensions. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1167-1186. doi: 10.3934/cpaa.2014.13.1167

[13]

Stéphane Junca, Bruno Lombard. Stability of neutral delay differential equations modeling wave propagation in cracked media. Conference Publications, 2015, 2015 (special) : 678-685. doi: 10.3934/proc.2015.0678

[14]

Jean Ginibre, Giorgio Velo. Modified wave operators without loss of regularity for some long range Hartree equations. II. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1357-1376. doi: 10.3934/cpaa.2015.14.1357

[15]

Shuangqian Liu, Qinghua Xiao. The relativistic Vlasov-Maxwell-Boltzmann system for short range interaction. Kinetic & Related Models, 2016, 9 (3) : 515-550. doi: 10.3934/krm.2016005

[16]

Stéphane Heuraux, Filipe da Silva. Simulations on wave propagation in fluctuating fusion plasmas for Reflectometry applications and new developments. Discrete & Continuous Dynamical Systems - S, 2012, 5 (2) : 307-328. doi: 10.3934/dcdss.2012.5.307

[17]

Toan T. Nguyen, Truyen V. Nguyen, Walter A. Strauss. Erratum to: Global magnetic confinement for the 1.5D Vlasov-Maxwell system. Kinetic & Related Models, 2015, 8 (3) : 615-616. doi: 10.3934/krm.2015.8.615

[18]

Philippe G. LeFloch, Seiji Ukai. A symmetrization of the relativistic Euler equations with several spatial variables. Kinetic & Related Models, 2009, 2 (2) : 275-292. doi: 10.3934/krm.2009.2.275

[19]

Jifeng Chu, Zaitao Liang, Fangfang Liao, Shiping Lu. Existence and stability of periodic solutions for relativistic singular equations. Communications on Pure & Applied Analysis, 2017, 16 (2) : 591-609. doi: 10.3934/cpaa.2017029

[20]

Meixiang Huang, Zhi-Qiang Shao. Riemann problem for the relativistic generalized Chaplygin Euler equations. Communications on Pure & Applied Analysis, 2016, 15 (1) : 127-138. doi: 10.3934/cpaa.2016.15.127

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (11)
  • HTML views (2)
  • Cited by (0)

Other articles
by authors

[Back to Top]