\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Escaping the trap of 'blocking': A kinetic model linking economic development and political competition

  • * Corresponding author

    * Corresponding author 
M.D. acknowledges a support by the University of Messina through the Research & Mobility 2015 Project (project code RES AND MOB 2015 DISTASO). D.K. acknowledges a support by the Indam (GNFM) through the Visiting Professor project 2015
Abstract Full Text(HTML) Figure(11) / Table(1) Related Papers Cited by
  • In this paper we present a kinetic model with evolutive stochastic game-type interactions, analyzing the relationship between the level of political competition in a society and the degree of economic liberalization. The above issue regards the complex interactions between economy and institutional policies intended to introduce technological innovations in a society, where technological innovations are intended in a broad sense comprehending reforms critical to production [3]. A special focus is placed on the political replacement effect described in a macroscopic model by Acemoglu and Robinson (AR-model [1], henceforth), which can determine the phenomenon of innovation 'blocking', possibly leading to economic backwardness. One of the goals of our modelization is to obtain a mesoscopic dynamical model whose macroscopic outputs are qualitatively comparable with stylized facts of the AR-model and the comparison is settled in a number of case studies. A set of numerical solutions is presented showing the non monotonous relationship between economic liberalization and political competition in particular conditions, which can be considered as an emergent phenomenon of the analyzed complex socio-economic interaction dynamics.

    Mathematics Subject Classification: Primary: 91D10; Secondary: 91C99.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Nonmonotonicity with 'blocking'

    Figure 2.  Non monotonicity without 'blocking'

    Figure 3.  Monotonicity without 'blocking'

    Figure 4.  Computational analysis of first order moments evolution

    Figure 5.  Initial conditions of the system

    Figure 6.  Innovation function vs. time (left) and vs. the inverse of the political competition ($1-\mathbb E^3_\nu$) (right) in a society with strong rulers and weak opposition

    Figure 7.  Time evolution of some significative marginal first moments of the distributions in the subpopulations (left) and the non monotonous relationship between the propensity to innovate of the rulers and the inverse of the political competition in the society

    Figure 8.  Innovation function vs.time (left) and vs. the opposite of the political power of the competing group ($1-\mathbb E^3_\nu$) (right) for different parameter values

    Figure 9.  Time evolution of the political power of the rulers, of the political power of the competing group and of the citizen wealth, for different parameter values

    Figure 10.  Time evolution of the political power of the rulers, the political power of the competing group and the citizen wealth, in an initially poor society (left), and in an initially rich society (right)

    Figure 11.  Evolution of the quantities F(t) (left) and G(t) (right)

    Table 1.  Parameters involved in the transition probabilities

    Parameter Meaning
    ${\tilde{\alpha }}$ positive return on the citizen wealth by means of the introduction of technological innovation
    $\beta $ citizen susceptibility to change opinion
    ${\tilde{\gamma }}$ negative return on the political power of the ruler by means of the political power of the competing group
     | Show Table
    DownLoad: CSV
  •   D. Acemoglu  and  J. A. Robinson , Economic backwardness in political perspectives, Am. Polit. Sci. Rev., 100 (2006) , 115-131. 
      D. Acemoglu  and  J. A. Robinson , Political losers as a barrier to economic development, Am. Econ. Rev., Papers and Proceedings, 90 (2000) , 126-130.  doi: 10.1257/aer.90.2.126.
      D. Acemoglu , Localised and biased technologies: Atkinson and Stiglitz's new view, induced innovations and directed technological change, The Economic Journal, 125 (2015) , 443-463.  doi: 10.1111/ecoj.12227.
      G. Ajmone Marsan , N. Bellomo  and  L. Gibelli , Stochastic evolving differential games toward a systems theory of behavioral social dynamics, Math. Models Methods Appl. Sci., 26 (2016) , 1051-1093.  doi: 10.1142/S0218202516500251.
      J. Banasiak and M. Lachowiz, Methods of Small Parameter in Mathematical Biology Series Modeling and simulation in Science, Engineering and Technology, Birkhäuser, 2014. doi: 10.1007/978-3-319-05140-6.
      S. Becker , A theory of competition among pressure groups for political influence, Q. J. Econ., 98 (1983) , 371-400.  doi: 10.2307/1886017.
      N. Bellomo , D. Knopoff  and  J. Soler , On the difficult interplay between life, ''complexity'', and mathematical sciences, Math. Models Methods Appl. Sci., 23 (2013) , 1861-1913.  doi: 10.1142/S021820251350053X.
      N. Bellomo , F. Colasuonno , D. Knopoff  and  J. Soler , From systems theory of sociology to modeling the onset and evolution of criminality, Netw. Heterog. Media, 10 (2015) , 421-441.  doi: 10.3934/nhm.2015.10.421.
      N. Bellomo , M. A. Herrero  and  A. Tosin , On the dynamics of social conflicts looking for the Black Swan, Kinet. Relat. Models, 6 (2013) , 459-479.  doi: 10.3934/krm.2013.6.459.
      T. Besley , T. Persson  and  D. M. Sturm , Political Competition, Policy and Growth: Theory and Evidence from the US, Rev. Econom. Stud., 77 (2010) , 1329-1352.  doi: 10.1111/j.1467-937X.2010.00606.x.
      M. Dolfin  and  M. Lachowicz , Modeling altruism and selfishness in welfare dynamics: The role of nonlinear interactions, Math. Models Methods Appl. Sci., 24 (2014) , 2361-2381.  doi: 10.1142/S0218202514500237.
      M. Dolfin  and  M. Lachowicz , Modeling opinion dynamics: How the network enhances consensus, Netw. Heterog. Media, 10 (2015) , 877-896.  doi: 10.3934/nhm.2015.10.877.
      M. Dolfin  and  M. Lachowicz , Modeling DNA thermal denaturation at the mesoscopic level, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014) , 2469-2482.  doi: 10.3934/dcdsb.2014.19.2469.
      B. During  and  G. Toscani , International and domestic trading and wealth distribution, Commun. Math. Sci., 6 (2008) , 1043-1058.  doi: 10.4310/CMS.2008.v6.n4.a12.
      B. During, D. Matthes and G. Toscani, Kinetic equations modelling wealth redistribution: A comparison of approaches Phys. Rev. E 78 (2008), 056103, 12pp. doi: 10.1103/PhysRevE.78.056103.
      B. During , D. Matthes  and  G. Toscani , A Boltzmann-type approach to the formation of wealth distribution curves, (Notes of the Porto Ercole School, June 2008), Riv. Mat. Univ. Parma, 8 (2009) , 199-261. 
      A. Gerschenkron, Economic Backwardness in Historical Perspectives, Harvard University Press, 1962.
      D. Helbing, Quantitative Sociodynamics. Stochastic Methods and Models of Social Interaction Processes Ⅱ Ed., Springer, 2010. doi: 10.1007/978-3-642-11546-2.
      D. Knopoff , On a mathematical theory of complex systems on networks with application to opinion formation, Math. Models Methods Appl. Sci., 24 (2014) , 405-426.  doi: 10.1142/S0218202513400137.
      L. Leonida , D. Maimone Ansaldo Patti  and  P. Navarra , Testing the political replacement effect: A Panel Data Analysis, Oxford B. Econ. Stat., 75 (2013) , 785-805. 
      R. Musil, Der Mann ohne Eigenschaften, Rowohkt Verlag, Austria, 1930–1943.
      L. Pareschi and G. Toscani, Interacting Multiagent Systems: Kinetic Equations and Monte Carlo Methods, Oxford University Press, 2014.
      L. Pareschi  and  G. Toscani , Self-similarity and power-like tails in non-conservative kinetic models, J. Stat. Phys., 124 (2006) , 747-779.  doi: 10.1007/s10955-006-9025-y.
      N. N. Taleb, The Black Swan: The Impact of the Highly Improbable, Random House, New York City, 2007.
      G. Toscani, Wealth redistribution in conservative linear kinetic models with taxation, Europhys. Lett., 88 (2009), 10007.
  • 加载中

Figures(11)

Tables(1)

SHARE

Article Metrics

HTML views(1332) PDF downloads(88) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return