We consider a non reactive multi component gas mixture.We propose a class of models, which can be easily generalized to multiple species. The two species mixture is modelled by a system of kinetic BGK equations featuring two interaction terms to account for momentum and energy transfer between the species. We prove consistency of our model: conservation properties, positivity of the solutions for the space homogeneous case, positivity of all temperatures, H-theorem and convergence to a global equilibrium in the space homogeneous case in the form of a global Maxwell distribution. Thus, we are able to derive the usual macroscopic conservation laws. In particular, by considering a mixture composed of ions and electrons, we derive the macroscopic equations of ideal MHD from our model.
Citation: |
P. Andries
, K. Aoki
and B. Perthame
, A consistent BGK-type model for gas mixtures, Journal of Statistical Physics, 106 (2002)
, 993-1018.
doi: 10.1023/A:1014033703134.![]() ![]() ![]() |
|
P. Asinari
, Asymptotic analysis of multiple-relaxation-time lattice Boltzmann schemes for mixture modeling, Computers and Mathematics with Applications, 55 (2008)
, 1392-1407.
doi: 10.1016/j.camwa.2007.08.006.![]() ![]() ![]() |
|
P. M. Bellan, Fundamentals of Plasma Physics, Cambridge University Press, 2006.
doi: 10.1017/CBO9780511807183.![]() ![]() |
|
M. Bennoune
, M. Lemou
and L. Mieussens
, Uniformly stable numerical schemes for the Boltzmann equation preserving the compressible Navier-Stokes asymptotics, Journal of Computational Physics, 227 (2008)
, 3781-3803.
doi: 10.1016/j.jcp.2007.11.032.![]() ![]() ![]() |
|
F. Bernard
, A. Iollo
and G. Puppo
, Accurate asymptotic preserving boundary conditions for
kinetic equations on Cartesian grids, Journal of Scientific Computing, 65 (2015)
, 735-766.
doi: 10.1007/s10915-015-9984-8.![]() ![]() ![]() |
|
C. Besse
, P. Degond
, F. Deluzet
, J. Claudel
, G. Gallice
and C. Tessieras
, A model hierarchy for ionospheric plasma modelling, Mathematical Models and Methods in Applied Sciences, 14 (2004)
, 393-415.
doi: 10.1142/S0218202504003283.![]() ![]() ![]() |
|
S. Brull
, An ellipsoidal statistical model for gas mixtures, Communications in Mathematical Sciences, 13 (2015)
, 1-13.
doi: 10.4310/CMS.2015.v13.n1.a1.![]() ![]() ![]() |
|
S. Brull
, V. Pavan
and J. Schneider
, Derivation of a BGK model for mixtures, European Journal of Mechanics B/Fluids, 33 (2012)
, 74-86.
doi: 10.1016/j.euromechflu.2011.12.003.![]() ![]() ![]() |
|
C. Cercignani,
Rarefied Gas Dynamics, From Basic Concepts to Actual Calculations, Cambridge University Press, 2000.
![]() ![]() |
|
C. Cercignani, The Boltzmann Equation and its Applications, Springer-Verlag, New York, 1988.
doi: 10.1007/978-1-4612-1039-9.![]() ![]() ![]() |
|
A. Crestetto
, N. Crouseilles
and M. Lemou
, Kinetic/fluid micro-macro numerical schemes
for Vlasov-Poisson-BGK equation using particles, Kinetic and Related Models, 5 (2012)
, 787-816.
doi: 10.3934/krm.2012.5.787.![]() ![]() ![]() |
|
G. Dimarco
, L. Mieussens
and V. Rispoli
, An asymptotic preserving automatic domain decomposition method for the Vlasov-Poisson-BGK system with applications to plasmas, Journal of Computational Physics, 274 (2014)
, 122-139.
doi: 10.1016/j.jcp.2014.06.002.![]() ![]() ![]() |
|
G. Dimarco
and L. Pareschi
, Numerical methods for kinetic equations, Acta Numerica, 23 (2014)
, 369-520.
doi: 10.1017/S0962492914000063.![]() ![]() ![]() |
|
F. Filbet
and S. Jin
, A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff sources, Journal of Computational Physics, 229 (2010)
, 7625-7648.
doi: 10.1016/j.jcp.2010.06.017.![]() ![]() ![]() |
|
V. Garzó
, A. Santos
and J. J. Brey
, A kinetic model for a multicomponent gas, Physics of Fluids, 1 (1989)
, 380-383.
![]() |
|
M. Groppi
, S. Monica
and G. Spiga
, A kinetic ellipsoidal BGK model for a binary gas mixture, epljournal, 96 (2011)
, 64002.
doi: 10.1209/0295-5075/96/64002.![]() ![]() |
|
E. P. Gross
and M. Krook
, Model for collision processes in gases: Small-amplitude oscillations of charged two-component systems, Physical Review, 102 (1956)
, 593.
doi: 10.1103/PhysRev.102.593.![]() ![]() |
|
B. Hamel
, Kinetic model for binary gas mixtures, Physics of Fluids, 8 (1965)
, 418-425.
doi: 10.1063/1.1761239.![]() ![]() |
|
M. Monteferrante
, S. Melchionna
and U. M. B. Marconi
, Lattice Boltzmann method for mixtures at variable Schmidt number, Journal of Chemical Physics, 141 (2014)
, 014102.
doi: 10.1063/1.4885719.![]() ![]() |
|
S. Pieraccini
and G. Puppo
, Implicit-explicit schemes for BGK kinetic equations, Journal of Scientific Computing, 32 (2007)
, 1-28.
doi: 10.1007/s10915-006-9116-6.![]() ![]() ![]() |
|
C. E. Pico Ortiz, L. O. E. dos Santos and P. C. Philippi, Thermal lattice Boltzmann BGK model for ideal binary mixtures, 19th International Congress of Mechanical Engineering, 2007.
![]() |
|
V. Sofonea
and R. Sekerka
, BGK models for diffusion in isothermal binary fluid systems, Physica, 299 (2001)
, 494-520.
doi: 10.1016/S0378-4371(01)00246-1.![]() ![]() |
|
H. Struchtrup, Macroscopic Transport Equations for Rarefied Gas Flows, Springer, 2005.
![]() ![]() |