\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

How does variability in cell aging and growth rates influence the Malthus parameter?

Abstract Full Text(HTML) Figure(3) / Table(6) Related Papers Cited by
  • Recent biological studies draw attention to the question of variability between cells. We refer to the study of Kiviet et al. published in 2014 [15]. A cell in a controlled culture grows at a constant rate $v>0$, but this rate can differ from one individual to another. The biological question we address here states as follows. How does individual variability in the growth rate influence the growth speed of the population? The growth speed of the population is measured by the Malthus parameter we define thereafter, also called in the literature fitness. Even if the variability in the growth rate among cells is small, with a distribution of coefficient of variation around 10%, and even if its influence on the Malthus parameter would be still smaller, such an influence may become determinant since it characterises the exponential growth speed of the population.

    Mathematics Subject Classification: Primary: 35Q92, 47A75; Secondary: 60J80, 92D25.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Model (A+V). $CV_{\rho_\alpha } \leadsto \lambda_{B,\rho_\alpha }$ defined by (11) for $\rho_\alpha (v) = \alpha ^{-1}\rho\big(\alpha ^{-1}(v- (1-\alpha )\bar v)\big)$ (the baseline density $\rho$ is a Gaussian density with mean $\bar v = 1$ and standard deviation $0.7$ truncated on $[0,2]$ and different division rates) $\gamma(a,v) = vB(a)$ with $B(a) = (a-1)^\beta \mathbf{1}_{\{a\geq1\}}$, $\beta \in \{0, 0.25, 0.5, 0.75, 1, 2, \ldots, 7\}$. Reference (all cells age at rate $\bar v = 1$): point of null abscissa and y-coordinate $\lambda_{B,\bar v = 1}$ defined by (10)

    Figure 2.  Model (S+V). Division rate $\gamma(x,v) = vxB(x)$ with $B(x) = (x-1)^2\mathbf{1}_{\{x\geq1\}}$. Estimated curve $CV_{\rho_\alpha } \leadsto \lambda_{B,\rho_\alpha }$ using estimator (16) (mean and 95% confidence interval based on $M=50$ Monte Carlo continuous time trees). Reference (all cells grow at a rate $\bar v=1$): $\lambda_{B,\bar v} = \bar v = 1$

    Figure 3.  Model (S+V). Standard deviation of two estimators of the Malthus parameter as $T$ increases (based on $M=50$ Monte Carlo continuous time trees simulated up to time $T$), for $\rho_{\alpha = 0.3}$ and division rate $\gamma(x,v) = vxB(x)$ with $B(x) = (x-1)^2 \mathbf{1}_{\{x\geq 1\}}$. Blue lower curve: estimation by (16) via the biomass. Green upper curve: estimation by (33) via the number of cells.

    Table 1.  Variations of the Malthus parameter compared to the reference value when introducing variability between cells, for an experimentally realistic division rate. Note: $\lambda_{\gamma,\rho} \searrow$ means that $\lambda_{\gamma,\rho} < \lambda_{\gamma,\bar v}$ for a non-degenerated probability distribution $\rho(\cdot)$ with mean $\bar v$ (truncated Gaussian), and so on

    Model (A+V) Model (S+V)
    Division rate $\gamma$ $v(a-1)^2 \mathbf{1}_{\{a\geq 1\}}$ $vx (x-1)^2 \mathbf{1}_{\{x\geq 1\}}$
    VariabilityIn the aging rateIn the growth rate
    Variations $\lambda_{\gamma,\rho} \searrow$
    (Figure 1)
    $\lambda_{\gamma,\rho} \searrow$
    (Figure 2)
    Comments Analytic result: Theorems 2.4 and 2.5-
     | Show Table
    DownLoad: CSV

    Table 2.  Model (S+V). Division rate $\gamma(x,v) = vxB(x)$ with $B(x) = (x-1)^2 \mathbf{1}_{\{x \geq 1\}}$. Estimation of the Malthus parameter $\lambda_{B,\rho_\alpha}$ (mean and 95% confidence interval based on $M=50$ Monte Carlo continuous time trees simulated up to time $T$) with respect to the coefficient of variation of the growth rates density $\rho_\alpha$ with mean $\bar v = 1$. Reference (all cells grow at a rate $\bar v=1$): $\lambda_{B,\bar v} = 1$

    $\boldsymbol{CV_{\rho_\alpha} = 5\%}$ $\boldsymbol{CV_{\rho_\alpha} = 10\%}$ $\boldsymbol{CV_{\rho_\alpha} = 15\%}$ $\boldsymbol{CV_{\rho_\alpha} = 20\%}$ $\boldsymbol{CV_{\rho_\alpha} = 25\%}$ $\boldsymbol{CV_{\rho_\alpha} = 30\%}$ $\boldsymbol{CV_{\rho_\alpha} = 35\%}$ $\boldsymbol{CV_{\rho_\alpha} = 40\%}$ $\boldsymbol{CV_{\rho_\alpha} = 45\%}$
    $\boldsymbol{T}$ 10.5 11 11.25 11.5 11.75 12 12.25 12.5 13
    $\boldsymbol{\underset{{\rm (Min.}\leq\cdot\leq {\rm Max.)}}{{\rm Mean}}}\boldsymbol{|\partial \mathcal{T}_T|}$ $\underset{(42~358\leq\cdot\leq52~147)}{46~837}$ $\underset{(57~254\leq\cdot\leq87~282)}{73~100}$ $\underset{(53~615\leq\cdot\leq116~052)}{90~027}$ $\underset{(68~946\leq\cdot\leq128~379)}{98~270}$ $\underset{(71~884\leq\cdot\leq157~032)}{107~305}$ $\underset{(63~409\leq\cdot\leq200~860)}{120~102}$ $\underset{(52~116\leq\cdot\leq172~328)}{104~628}$ $\underset{(28~171\leq\cdot\leq192~021)}{117~208}$ $\underset{(39~238\leq\cdot\leq238~181)}{114~180}$
    $\boldsymbol{\underset{{\rm (sd.)}}{{\rm Mean}}} \, \boldsymbol{\widehat \lambda_T}$ $\underset{(0.0006)}{0.9985}$ $\underset{(0.0009)}{0.9938}$ $\underset{(0.0014)}{0.9867}$ $\underset{(0.0018)}{0.9757}$ $\underset{(0.0019)}{0.9617}$ $\underset{(0.0027)}{0.9450}$ $\underset{(0.0035)}{0.9245}$ $\underset{(0.0030)}{0.8985}$ $\underset{(0.0039)}{0.8722}$
    95% CI [0.9974, 0.9999] [0.9923, 0.9954] [0.9841, 0.9893] [0.9717, 0.9789] [0.9583, 0.9656] [0.9397, 0.9505] [0.9178, 0.9312] [0.8920, 0.9036] [0.8650, 0.8794]
     | Show Table
    DownLoad: CSV

    Table 3.  Model (S+V). Division rate $\gamma(x,v) = vxB(x)$ with $B(x) = (x-1)^8 \mathbf{1}_{\{x \geq 1\}}$. Estimation of the Malthus parameter $\lambda_{B,\rho_\alpha}$ (mean and 95% confidence interval based on $M=50$ Monte Carlo continuous time trees simulated up to time $T$) with respect to the coefficient of variation of the growth rates density $\rho_\alpha$ with mean $\bar v = 1$. Reference (all cells grow at a rate $\bar v=1$): $\lambda_{B,\bar v} = 1$

    $\boldsymbol{CV_{\rho_\alpha} = 5\%}$ $\boldsymbol{CV_{\rho_\alpha} = 10\%}$ $\boldsymbol{CV_{\rho_\alpha} = 15\%}$ $\boldsymbol{CV_{\rho_\alpha} = 20\%}$ $\boldsymbol{CV_{\rho_\alpha} = 25\%}$ $\boldsymbol{CV_{\rho_\alpha} = 30\%}$ $\boldsymbol{CV_{\rho_\alpha} = 35\%}$ $\boldsymbol{CV_{\rho_\alpha} = 40\%}$ $\boldsymbol{CV_{\rho_\alpha} = 45\%}$
    $\boldsymbol{T}$ 10.5 11 11.25 11.5 11.75 12 12.25 12.5 13
    $\boldsymbol{\underset{{\rm (Min.}\leq\cdot\leq {\rm Max.)}}{{\rm Mean}}}\boldsymbol{|\partial \mathcal{T}_T|}$ $\underset{(41~357\leq\cdot\leq53~270)}{47~160}$ $\underset{(61~758\leq\cdot\leq84~191)}{73~670}$ $\underset{(66~499\leq\cdot\leq118~486)}{86~410}$ $\underset{(61~924\leq\cdot\leq127~299)}{95~230}$ $\underset{(53~902\leq\cdot\leq156~868)}{104~480}$ $\underset{(53~156\leq\cdot\leq145~125)}{107~540}$ $\underset{(50~784\leq\cdot\leq162~615)}{100~480}$ $\underset{(42~533\leq\cdot\leq192~984)}{90~440}$ $\underset{(22~600\leq\cdot\leq200~034)}{102~880}$
    $\boldsymbol{\underset{{\rm (sd.)}}{{\rm Mean}}} \, \boldsymbol{\widehat \lambda_T}$ $\underset{(0.0005)}{0.9984}$ $\underset{(0.0009)}{0.9934}$ $\underset{(0.0012)}{0.9855}$ $\underset{(0.0015)}{0.9732}$ $\underset{(0.0019)}{0.9589}$ $\underset{(0.0023)}{0.9384}$ $\underset{(0.0025)}{0.9166}$ $\underset{(0.0036)}{0.8890}$ $\underset{(0.0044)}{0.8597}$
    95% CI [0.9975, 0.9995] [0.9918, 0.9952] [0.9833, 0.9876] [0.9705, 0.9763] [0.9554, 0.9628] [0.9332, 0.9426] [0.9113, 0.9214] [0.8820, 0.8945] [0.8489, 0.8655]
     | Show Table
    DownLoad: CSV

    Table 4.  Model (S+V). Division rate $\gamma(x,v) = vxB(x)$ with $B(x) = (x-1)^2 \mathbf{1}_{\{x \geq 1\}}$. Asymmetric division (a cell of size $x$ splits into two cells of size $ux$ and $(1-u)x$ for $u$ uniformly drawn on $[0.1,0.9]$). Estimation of the Malthus parameter $\lambda_{B,\rho_\alpha}$ (mean and 95% confidence interval based on $M=50$ Monte Carlo continuous time trees simulated up to time $T $) with respect to the coefficient of variation of the growth rates density $\rho_\alpha$ with mean $\bar v = 1$. Reference (all cells grow at a rate $\bar v=1$): $\lambda_{B,\bar v} = 1$

    $\boldsymbol{CV_{\rho_\alpha} = 5\%}$ $\boldsymbol{CV_{\rho_\alpha} = 10\%}$ $\boldsymbol{CV_{\rho_\alpha} = 15\%}$ $\boldsymbol{CV_{\rho_\alpha} = 20\%}$ $\boldsymbol{CV_{\rho_\alpha} = 25\%}$ $\boldsymbol{CV_{\rho_\alpha} = 30\%}$ $\boldsymbol{CV_{\rho_\alpha} = 35\%}$ $\boldsymbol{CV_{\rho_\alpha} = 40\%}$ $\boldsymbol{CV_{\rho_\alpha} = 45\%}$
    $\boldsymbol{T}$ 10.5 11 11.25 11.5 11.75 12 12.25 12.5 13
    $\boldsymbol{\underset{{\rm (Min.}\leq\cdot\leq {\rm Max.)}}{{\rm Mean}}}\boldsymbol{|\partial \mathcal{T}_T|}$ $\underset{(49~880\leq\cdot\leq59~486)}{53~590}$ $\underset{(69~343\leq\cdot\leq97~237)}{85~310}$ $\underset{(82~182\leq\cdot\leq129~410)}{101~350}$ $\underset{(86~751\leq\cdot\leq154~226)}{121~570}$ $\underset{(84~620\leq\cdot\leq234~613)}{129~770}$ $\underset{(67~334\leq\cdot\leq222~004)}{135~650}$ $\underset{(50~493\leq\cdot\leq234~646)}{141~660}$ $\underset{(23~530\leq\cdot\leq243~023)}{140~170}$ $\underset{(18~187\leq\cdot\leq359~824)}{154~120}$
    $\boldsymbol{\underset{{\rm (sd.)}}{{\rm Mean}}} \, \boldsymbol{\widehat \lambda_T}$ $\underset{(0.0006)}{0.9987}$ $\underset{(0.0008)}{0.9948}$ $\underset{(0.0014)}{0.9880}$ $\underset{(0.0016)}{0.9783}$ $\underset{(0.0019)}{0.9665}$ $\underset{(0.0021)}{0.9511}$ $\underset{(0.0026)}{0.9322}$ $\underset{(0.0038)}{0.9099}$ $\underset{(0.0039)}{0.8836}$
    95% CI [0.9972, 0.9996] [0.9932, 0.9963] [0.9855, 0.9906] [0.9755, 0.9824] [0.9634, 0.9706] [0.9472, 0.9545] [0.9263, 0.9372] [0.9018, 0.9166] [0.8743, 0.8925]
     | Show Table
    DownLoad: CSV

    Table 5.  Model (S+V). Division rate $\gamma(x,v) = v B(x)$ with $B(x) = (x-1)^2 \mathbf{1}_{\{x \geq 1\}}$. Estimation of the Malthus parameter $\lambda_{B,\rho_\alpha}$ (mean and 95% confidence interval based on $M=50$ Monte Carlo continuous time trees simulated up to time $T$) with respect to the coefficient of variation of the growth rates density $\rho_\alpha$ with mean $\bar v = 1$. Reference (all cells grow at a rate $\bar v=1$): $\lambda_{B,\bar v} \approx 0.6130$ (over 50 continuous time trees simulated up to time 17.25, sd. 0.0016). Among the 50 realisations, 95% lie between $0.6098$ and $0.6161$. The mean-size of the 50 trees is 46 353 (the smallest tree counts $30~553$ cells and the largest $70~914$)

    $\boldsymbol{CV_{\rho_\alpha} = 5\%}$ $\boldsymbol{CV_{\rho_\alpha} = 10\%}$ $\boldsymbol{CV_{\rho_\alpha} = 15\%}$ $\boldsymbol{CV_{\rho_\alpha} = 20\%}$ $\boldsymbol{CV_{\rho_\alpha} = 25\%}$ $\boldsymbol{CV_{\rho_\alpha} = 30\%}$ $\boldsymbol{CV_{\rho_\alpha} = 35\%}$ $\boldsymbol{CV_{\rho_\alpha} = 40\%}$ $\boldsymbol{CV_{\rho_\alpha} = 45\%}$
    $\boldsymbol{T}$ 17.5 18 18.25 18.5 18.75 19 19.25 19.5 20
    $\boldsymbol{\underset{{\rm (Min.}\leq\cdot\leq {\rm Max.)}}{{\rm Mean}}}\boldsymbol{|\partial \mathcal{T}_T|}$ $\underset{(38~138\leq\cdot\leq71~168)}{55~219}$ $\underset{(43~802\leq\cdot\leq95~071)}{67~760}$ $\underset{(40~296\leq\cdot\leq113~904)}{75~748}$ $\underset{(32~035\leq\cdot\leq119~198)}{76~084}$ $\underset{(29~071\leq\cdot\leq131~343)}{73~931}$ $\underset{(30~940\leq\cdot\leq141~046)}{76~074}$ $\underset{(28~704\leq\cdot\leq118~295)}{69~719}$ $\underset{(10~488\leq\cdot\leq120~506)}{57~913}$ $\underset{(3~017\leq\cdot\leq190~355)}{62~582}$
    $\boldsymbol{\underset{{\rm (sd.)}}{{\rm Mean}}} \, \boldsymbol{\widehat \lambda_T}$ $\underset{(0.0014)}{0.6116}$ $\underset{(0.0014)}{0.6090}$ $\underset{(0.0015)}{0.6043}$ $\underset{(0.0018)}{0.5976}$ $\underset{(0.0021)}{0.5893}$ $\underset{(0.0023)}{0.5788}$ $\underset{(0.0025)}{0.5658}$ $\underset{(0.0033)}{0.5513}$ $\underset{(0.0038)}{0.5348}$
    95% CI [0.6086, 0.6138] [0.6066, 0.6115] [0.6017, 0.6071] [0.5945, 0.6010] [0.5838, 0.5942] [0.5752, 0.5861] [0.5607, 0.5702] [0.5438, 0.5578] [0.5270, 0.5413]
     | Show Table
    DownLoad: CSV

    Table 6.  Model (S+V). Division rate $\gamma(x,v) = B(x)$ with $B(x) = (x-1)^2 \mathbf{1}_{\{x \geq 1\}}$. Estimation of the Malthus parameter $\lambda_{B,\rho_\alpha}$ (mean and 95% confidence interval based on $M=50$ Monte Carlo continuous time trees simulated up to time $T$) with respect to the coefficient of variation of the growth rates density $\rho_\alpha$ with mean $\bar v = 1$. Reference (all cells grow at a rate $\bar v=1$): $\lambda_{B,\bar v} = 1$

    $\boldsymbol{CV_{\rho_\alpha} = 5\%}$ $\boldsymbol{CV_{\rho_\alpha} = 10\%}$ $\boldsymbol{CV_{\rho_\alpha} = 15\%}$ $\boldsymbol{CV_{\rho_\alpha} = 20\%}$ $\boldsymbol{CV_{\rho_\alpha} = 25\%}$ $\boldsymbol{CV_{\rho_\alpha} = 30\%}$ $\boldsymbol{CV_{\rho_\alpha} = 35\%}$ $\boldsymbol{CV_{\rho_\alpha} = 40\%}$ $\boldsymbol{CV_{\rho_\alpha} = 45\%}$
    $\boldsymbol{T}$ 10.5 10.75 11 11.25 11.5 11.75 12 12.25 12.5
    $\boldsymbol{\underset{{\rm (Min.}\leq\cdot\leq {\rm Max.)}}{{\rm Mean}}}\boldsymbol{|\partial \mathcal{T}_T|}$ $\underset{(35~256\leq\cdot\leq42~659)}{39~660}$ $\underset{(38~675\leq\cdot\leq60~374)}{49~520}$ $\underset{(47~384\leq\cdot\leq82~371)}{61~150}$ $\underset{(48~639\leq\cdot\leq111~048)}{79~470}$ $\underset{(50~665\leq\cdot\leq139~785)}{92~490}$ $\underset{(60~083\leq\cdot\leq171~387)}{109~600}$ $\underset{(48~810\leq\cdot\leq231~667)}{124~320}$ $\underset{(45~032\leq\cdot\leq239~816)}{143~760}$ $\underset{(43~934\leq\cdot\leq287~633)}{146~400}$
    $\boldsymbol{\underset{{\rm (sd.)}}{{\rm Mean}}} \, \boldsymbol{\widehat \lambda_T}$ $\underset{(0.0006)}{0.9993}$ $\underset{(0.0013)}{0.9974}$ $\underset{(0.0016)}{0.9937}$ $\underset{(0.0019)}{0.9893}$ $\underset{(0.0022)}{0.9827}$ $\underset{(0.0027)}{0.9743}$ $\underset{(0.0034)}{0.9644}$ $\underset{(0.0030)}{0.9530}$ $\underset{(0.0041)}{0.9400}$
    95% CI [0.9982, 1.0006] [0.9949, 0.9996] [0.9894, 0.9966] [0.9861, 0.9933] [0.9784, 0.9878] [0.9688, 0.9794] [0.9588, 0.9715] [0.9466, 0.9590] [0.9317, 0.9470]
     | Show Table
    DownLoad: CSV
  •   A. Amir , Cell size regulation in bacteria, Physical Review Letters, 112 (2014) , 208102.  doi: 10.1103/PhysRevLett.112.208102.
      V. Bansaye , J.-F. Delmas , L. Marsalle  and  V. C. Tran , Limit theorems for Markov processes indexed by continuous time Galton-Watson trees, The Annals of Applied Probability, 21 (2011) , 2263-2314.  doi: 10.1214/10-AAP757.
      F. Billy , J. Clairambault , O. Fercoq , S. Gaubert , T. Lepoutre , T. Ouillon  and  S. Saito , Synchronisation and control of proliferation in cycling cell population models with age structure, Mathematics and Computers in Simulation, 96 (2014) , 66-94.  doi: 10.1016/j.matcom.2012.03.005.
      H. BrezisFunctional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2011. 
      V. Calvez , M. Doumic  and  P. Gabriel , Self-similarity in a general aggregation-fragmentation problem. Application to fitness analysis, Journal de mathématiques pures et appliquées, 98 (2012) , 1-27.  doi: 10.1016/j.matpur.2012.01.004.
      F. Campillo, N. Champagnat and C. Fritsch, On the Variations of the Principal Eigenvalue and the Probability of Survival with Respect to a Parameter in Growth-Fragmentation-Death Models arXiv: 1601. 02516.
      J. Clairambault , P. Michel  and  B. Perthame , Circadian rhythm and tumour growth, Comptes Rendus Mathematique de l'Académie des Sciences Paris, 342 (2006) , 17-22.  doi: 10.1016/j.crma.2005.10.029.
      B. Cloez, Limit Theorems for some Branching Measure-Valued Processes arXiv: 1106. 0660.
      R. Dautray and  J.-L. LionsMathematical Analysis and Numerical Methods for Science and Technology, Springer-Verlag, Berlin, 1990. 
      M. Doumic , Analysis of a population model structured by the cells molecular content, Mathematical Modelling of Natural Phenomena, 2 (2007) , 121-152.  doi: 10.1051/mmnp:2007006.
      M. Doumic  and  P. Gabriel , Eigenelements of a general aggregation-fragmentation model, Mathematical Models and Methods in Applied Sciences, 20 (2010) , 757-783.  doi: 10.1142/S021820251000443X.
      M. Doumic , M. Hoffmann , N. Krell  and  L. Robert , Statistical estimation of a growth-fragmentation model observed on a genealogical tree, Bernoulli, 21 (2015) , 1760-1799.  doi: 10.3150/14-BEJ623.
      S. Gaubert  and  T. Lepoutre , Discrete limit and monotonicity properties of the Floquet eigenvalue in an age structured cell division cycle model, Journal of Mathematical Biology, 71 (2015) , 1663-1703.  doi: 10.1007/s00285-015-0874-3.
      J. Guyon , Limit theorems for bifurcating Markov chains. Application to the detection of cellular aging, The Annals of Applied Probability, 17 (2007) , 1538-1569.  doi: 10.1214/105051607000000195.
      D. J. Kiviet , P. Nghe , N. Walker , S. Boulineau , V. Sunderlikova  and  S. J. Tans , Stochasticity of metabolism and growth at the single-cell level, Nature, 514 (2014) , 376-379.  doi: 10.1038/nature13582.
      J. L. Lebowitz  and  S. I. Rubinow , A theory for the age and generation time distribution of a microbial population, Journal of Mathematical Biology, 1 (1974) , 17-36.  doi: 10.1007/BF02339486.
      A. G. Marr , R. J. Harvey  and  W. C. Trentini , Growth and division of Escherichia coli, Journal of Bacteriology, 91 (1966) , 2388-2389. 
      J. A. J. Metz and O. Diekmann, Formulating models for structured populations, In The dynamics of physiologically structured populations (Amsterdam, 1983), Lecture Notes in Biomathematics, 68 (1986), 78-135. doi: 10.1007/978-3-662-13159-6_3.
      P. Michel , Optimal proliferation rate in a cell division model, Mathematical Modelling of Natural Phenomena, 1 (2006) , 23-44.  doi: 10.1051/mmnp:2008002.
      S. Mischler , B. Perthame  and  L. Ryzhik , Stability in a nonlinear population maturation model, Mathematical Models and Methods in Applied Sciences, 12 (2002) , 1751-1772.  doi: 10.1142/S021820250200232X.
      S. Mischler  and  J. Scher , Spectral analysis of semigroups and growth-fragmentation equations, Annales de l'Institut Henri Poincaré (C) Analyse Non Linéaire, 33 (2016) , 849-898.  doi: 10.1016/j.anihpc.2015.01.007.
      A. Olivier, Statistical Analysis of Growth-Fragmentation Models Ph. D thesis, University Paris-Dauphine, 2015. Available from: https://hal.archives-ouvertes.fr/tel-01235239/document
      M. Osella , E. Nugent  and  M. Cosentino Lagomarsino , Concerted control of Escherichia coli cell division, PNAS, 111 (2014) , 3431-3435. 
      B. Perthame, Transport Equations Arising In Biology, Birckhäuser Frontiers in mathematics edition, 2007.
      L. Robert, M. Hoffmann, N. Krell, S. Aymerich, J. Robert and M. Doumic, Division Control in Escherichia Coli is Based on a Size-Sensing Rather than a Timing Mechanism BMC Biology, 2014.
      M. Rotenberg , Transport theory for growing cell populations, Journal of Theoretical Biology, 103 (1983) , 181-199.  doi: 10.1016/0022-5193(83)90024-3.
      M. Schaechter , J. P. Williamson , J. R. Hood Jun  and  A. L. Koch , Growth, Cell and Nuclear Divisions in some Bacteria, Microbiology, 29 (1962) , 421-434.  doi: 10.1099/00221287-29-3-421.
      I. Soifer , L. Robert , N. Barkai  and  A. Amir , Single-cell analysis of growth in budding yeast and bacteria reveals a common size regulation strategy, Current Biology, 26 (2016) , 356-361.  doi: 10.1016/j.cub.2015.11.067.
      S. Taheri-Araghi , S. Bradde , J. T. Sauls , N. S. Hill , P. A. Levin , J. Paulsson , M. Vergassola  and  S. Jun , Cell-size control and homeostasis in bacteria, Current Biology, 25 (2015) , 385-391.  doi: 10.1016/j.cub.2014.12.009.
  • 加载中

Figures(3)

Tables(6)

SHARE

Article Metrics

HTML views(355) PDF downloads(154) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return