We consider the modified simple reacting spheres (MSRS) kinetic model that, in addition to the conservation of energy and momentum, also preserves the angular momentum in the collisional processes. In contrast to the line-of-center models or chemical reactive models considered in [
Citation: |
M. Bisi
and M. J. Cáceres
, A BGK relaxation model for polyatomic gas mixtures, Commun. Math. Sci., 14 (2016)
, 297-325.
doi: 10.4310/CMS.2016.v14.n2.a1.![]() ![]() ![]() |
|
F. Carvalho, J. Polewczak and A. J. Soares, On the kinetic systems for simple reacting spheres: modeling and linearized equations, in From Particle Systems and Partial Differential Equations Ⅰ, Springer Proceedings in Mathematics & Statistics, 75 (2014), 251-267.
doi: 10.1007/978-3-642-54271-8_12.![]() ![]() ![]() |
|
F. Carvalho, J. Polewczak and A. J. Soares, Kinetic theory of simple reacting spheres: an application to coloring processes, in From Particle Systems and Partial Differential Equations Ⅱ, Springer Proceedings in Mathematics & Statistics, 129 (2015), 153-172.
doi: 10.1007/978-3-319-16637-7_4.![]() ![]() ![]() |
|
C. Cercignani, The Boltzmann Equation and its Applications, Springer, New York, 1988.
doi: 10.1007/978-1-4612-1039-9.![]() ![]() ![]() |
|
A. S. Cukrowski
, The role of products and a reverse reaction in analysis of nonequilibrium effects in a bimolecular chemical reaction in a dilute gas, Physica A, 275 (2000)
, 134-151.
doi: 10.1016/S0378-4371(99)00410-0.![]() ![]() |
|
J. S. Dahler
and L. Qin
, Nonequilibrium Statistical Mechanics of Chemically Reactive Fluids, J. Chem. Physics, 118 (2003)
, 8396-8404.
doi: 10.1063/1.1565331.![]() ![]() |
|
L. Desvillettes
, R. Monaco
and F. Salvarani
, A kinetic model allowing to obtain the energy law of polytropic gases in the presence of chemical reactions, Eur. J. Mech. B Fluids, 24 (2005)
, 219-236.
doi: 10.1016/j.euromechflu.2004.07.004.![]() ![]() ![]() |
|
A. Ern
and V. Giovangigli
, Kinetic theory of reactive gas mixtures with application to combustion, Transp. Theory Stat. Phys., 32 (2003)
, 657-677.
doi: 10.1081/TT-120025071.![]() ![]() ![]() |
|
V. Giovangigli
and M. Massot
, Entropic structure of multicomponent reactive flows with partial equilibrium reduced chemistry, Math. Meth. Appl. Sci., 27 (2004)
, 739-768.
doi: 10.1002/mma.429.![]() ![]() ![]() |
|
V. Giovangigli, Multicomponent Flow Modeling, Birkhäuser, Boston, 1999.
doi: 10.1007/978-1-4612-1580-6.![]() ![]() ![]() |
|
M. Groppi
and J. Polewczak
, On two kinetic models for chemical reactions: Comparisons and existence results, J. Stat. Physics, 117 (2004)
, 211-241.
doi: 10.1023/B:JOSS.0000044059.59066.a9.![]() ![]() ![]() |
|
M. Groppi
and G. Spiga
, Kinetic approach to chemical reactions and inelastic transitions in a rarefied gas, J. Math. Chem., 26 (1999)
, 197-219.
![]() |
|
M. Groppi
and G. Spiga
, A Bhatnagar-Gross-Krook-type approach for chemically reacting gas mixtures, Phys. Fluids, 16 (2004)
, 4273-4284.
doi: 10.1063/1.1808651.![]() ![]() ![]() |
|
G. M. Kremer, M. P. Bianchi and A. J. Soares, A relaxation kinetic model for transport phenomena in a reactive flow Phys. Fluids 18 (2006), 037104, 15pp.
doi: 10.1063/1.2185691.![]() ![]() ![]() |
|
G. M. Kremer
, M. P. Bianchi
and A. J. Soares
, Analysis of the trend to equilibrium of a chemically reacting system, J. Phys. A: Math. Theor., 40 (2007)
, 2553-2571.
doi: 10.1088/1751-8113/40/10/020.![]() ![]() ![]() |
|
J. Polewczak
, The kinetic theory of simple reacting spheres: Ⅰ. Global existence result in a dilute-gas case, J. Stat. Physics, 100 (2000)
, 327-362.
doi: 10.1023/A:1018608216136.![]() ![]() ![]() |
|
J. Polewczak and A. J. Soares, Kinetic theory of simple reacting spheres Ⅰ, in 27th International Symposium on Rarefied Gas Dynamics, 2010, Pacific Grove. AIP Conference Proceedings, 1333 (2011), 117-122.
doi: 10.1063/1.3562635.![]() ![]() |
|
R. D. Present
, On the velocity distribution in a chemically reacting gas, J. Chem. Phys., 31 (1959)
, 747-750.
doi: 10.1063/1.1730456.![]() ![]() |
|
I. Prigogine
and M. Mahieu
, Sur lapPerturbation de la distribution de Maxwell par des réactions chimiques en phase gazeuse, Physica, XVI (1950)
, 51-64.
![]() |
|
I. Prigogine
and E. Xhrouet
, On the perturbation of Maxwell distribution function by chemical reaction in gases, Physica, 15 (1949)
, 913-932.
doi: 10.1016/0031-8914(49)90057-9.![]() ![]() |
|
L. Qin
and J. S. Dahler
, The kinetic theory of a simple, chemically reactive fluid: Scattering functions and relaxation processes, J. Chem. Physics, 103 (1995)
, 725-750.
doi: 10.1063/1.470106.![]() ![]() |
|
J. Ross
and P. Mazur
, Some deductions from a formal statistical mechanical theory of chemical kinetics, J. Chem. Phys., 35 (1961)
, 19-28.
doi: 10.1063/1.1731889.![]() ![]() |
|
A. Rossani
and G. Spiga
, A note on the kinetic theory of chemically reacting gases, Physica A, 272 (1999)
, 563-573.
doi: 10.1016/S0378-4371(99)00336-2.![]() ![]() ![]() |
|
B. Shizgal
and M. Karplus
, Nonequilibrium contributions to the rate of reaction. Ⅰ. Perturbation of the velocity distribution function, J. Chem. Phys., 52 (1969)
, 4262-4278.
![]() ![]() |
|
A. W. Silva
, G. M. Alves
and G. M. Kremer
, Transport phenomena in a reactive quaternary gas mixture, Physica A, 374 (2007)
, 533-548.
doi: 10.1016/j.physa.2006.07.039.![]() ![]() |
|
H. Van Beijeren
and M. H. Ernst
, The modified Enskog equation, Physica, 68 (1973)
, 437-456.
doi: 10.1016/0031-8914(73)90372-8.![]() ![]() |
|
N. Xystris
and J. S. Dahler
, Kinetic theory of simple reacting spheres, J. Chem. Phys., 68 (1978)
, 387-401.
doi: 10.1063/1.435772.![]() ![]() |