A version of fractional diffusion on bounded domains, subject to 'homogeneous Dirichlet boundary conditions' is derived from a kinetic transport model with homogeneous inflow boundary conditions. For nonconvex domains, the result differs from standard formulations. It can be interpreted as the forward Kolmogorow equation of a stochastic process with jumps along straight lines, remaining inside the domain.
Citation: |
P. Aceves-Sanchez and L. Cesbron, Fractional diffusion limit for a fractional Vlasov-Fokker-Planck equation, preprint, arXiv: 1607.00855.
![]() |
|
P. Aceves-Sanchez and A. Mellet, Asymptotic analysis of a Vlasov-Boltzmann equation with anomalous scaling, preprint, arXiv: 1606.01023.
![]() |
|
P. Aceves-Sanchez
and C. Schmeiser
, Fractional-diffusion-advection limit of a kinetic model, SIAM J. Math. Anal., 48 (2016)
, 2806-2818.
doi: 10.1137/15M1045387.![]() ![]() ![]() |
|
N. Ben Abdallah
, A. Mellet
and M. Puel
, Anomalous diffusion limit for kinetic equations with degenerate collision frequency, Math. Models Methods Appl. Sci., 21 (2011)
, 2249-2262.
doi: 10.1142/S0218202511005738.![]() ![]() ![]() |
|
D. A. Benson
, R. Schumer
, M. M. Meerschaert
and S. W. Wheatcraft
, Fractional dispersion, lévy motion, and the made tracer tests, Transport in Porous Media, 42 (2001)
, 211-240.
doi: 10.1023/A:1006733002131.![]() ![]() ![]() |
|
K. Bogdan
and T. Jakubowski
, Estimates of heat kernel of fractional laplacian perturbed by gradient operators, Comm. Math. Phys., 271 (2007)
, 179-198.
doi: 10.1007/s00220-006-0178-y.![]() ![]() ![]() |
|
L. Cesbron, Anomalous diffusion limit of kinetic equations on spatially bounded domains, work in progress.
![]() |
|
L. Cesbron
, A. Mellet
and K. Trivisa
, Anomalous transport of particles in plasma physics, Appl. Math. Lett., 25 (2012)
, 2344-2348.
doi: 10.1016/j.aml.2012.06.029.![]() ![]() ![]() |
|
Z.-Q. Chen
and R. Song
, Estimates on Green functions and Poisson kernels for symmetric stable processes, Math. Ann., 312 (1998)
, 465-501.
doi: 10.1007/s002080050232.![]() ![]() ![]() |
|
R. Dautray and J. -L. Lions,
Mathematical Analysis and Numerical Methods for Science and Technology. Evolution Problems, Ⅱ, Vol. 6, Springer-Verlag, Berlin, 1993.
doi: 10.1007/978-3-642-58004-8.![]() ![]() ![]() |
|
P. Degond
, T. Goudon
and F. Poupaud
, Diffusion limit for nonhomogeneous and non-micro-reversible processes, Indiana Univ. Math. J., 49 (2000)
, 1175-1198.
![]() ![]() |
|
D. del Castillo-Negrete
, B. Carreras
and V. Lynch
, Nondiffusive transport in plasma turbulence: A fractional diffusion approach, Physical Review Letters, 94 (2005)
, Article 065003.
![]() |
|
X. Fernández-Real
and X. Ros-Oton
, Boundary regularity for the fractional heat equation, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM, 110 (2016)
, 49-64.
doi: 10.1007/s13398-015-0218-6.![]() ![]() ![]() |
|
M. Fukushima, Y. Oshima and M. Takeda,
Dirichlet Forms and Symmetric Markov Processes, Vol. 19, Walter de Gruyter, 2011.
doi: 10.1515/9783110889741.![]() ![]() ![]() |
|
G. J. Habetler
and B. J. Matkowsky
, Uniform asymptotic expansions in transport theory with small mean free paths, and the diffusion approximation, J. Mathematical Phys., 16 (1975)
, 846-854.
![]() ![]() |
|
M. Jara
, T. Komorowski
and S. Olla
, Limit theorems for additive functionals of a Markov chain, Ann. Appl. Probab., 19 (2009)
, 2270-2300.
doi: 10.1214/09-AAP610.![]() ![]() ![]() |
|
M. Kwaśnicki, Ten equivalent definitions of the fractional Laplace operator, preprint, arXiv: 1507.07356.
![]() |
|
E. Larsen
and J. Keller
, Asymptotic solution of neutron transport processes for small free paths, J. Math. Phys., 15 (1974)
, 75-81.
![]() ![]() |
|
A. Mellet
, Fractional diffusion limit for collisional kinetic equations: A moments method, Indiana Univ. Math. J., 59 (2010)
, 1333-1360.
doi: 10.1512/iumj.2010.59.4128.![]() ![]() ![]() |
|
A. Mellet
, S. Mischler
and C. Mouhot
, Fractional diffusion limit for collisional kinetic equations, Arch. Ration. Mech. Anal., 199 (2011)
, 493-525.
doi: 10.1007/s00205-010-0354-2.![]() ![]() ![]() |
|
E. D. Nezza
, G. Palatucci
and E. Valdinoci
, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012)
, 521-573.
doi: 10.1016/j.bulsci.2011.12.004.![]() ![]() ![]() |
|
R. Servadei
and E. Valdinoci
, On the spectrum of two different fractional operators, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014)
, 831-855.
doi: 10.1017/S0308210512001783.![]() ![]() ![]() |
|
R. Song
and Z. Vondraček
, Potential theory of subordinate killed Brownian motion in a domain, Probab. Theory Related Fields, 125 (2003)
, 578-592.
doi: 10.1007/s00440-002-0251-1.![]() ![]() ![]() |
|
J.-L. Vázquez
, Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014)
, 857-885.
doi: 10.3934/dcdss.2014.7.857.![]() ![]() ![]() |
|
E. Wigner,
Nuclear Reactor Theory, AMS, 1961.
![]() |