We study dimension reduction for the three-dimensional Gross-Pitaevskii equation with a long-range and anisotropic dipole-dipole interaction modeling dipolar Bose-Einstein condensation in a strong interaction regime. The cases of disk shaped condensates (confinement from dimension three to dimension two) and cigar shaped condensates (confinement to dimension one) are analyzed. In both cases, the analysis combines averaging tools and semiclassical techniques. Asymptotic models are derived, with rates of convergence in terms of two small dimensionless parameters characterizing the strength of the confinement and the strength of the interaction between atoms.
Citation: |
W. Bao , N. Ben Abdallah and Y. Cai , Gross-Pitaevskii-Poisson equations for dipolar Bose-Einstein condensate with anisotropic confinement, SIAM J. Math. Anal., 44 (2012) , 1713-1741. doi: 10.1137/110850451. | |
W. Bao and Y. Cai , Mathematical theory and numerical methods for Bose-Einstein condensation, Kinet. Relat. Mod., 6 (2013) , 1-135. doi: 10.3934/krm.2013.6.1. | |
W. Bao , Y. Cai and H. Wang , Efficient numerical methods for computing ground states and dynamics of dipolar Bose-Einstein condensates, J. Comput. Phys., 229 (2010) , 7874-7892. doi: 10.1016/j.jcp.2010.07.001. | |
W. Bao , L. Le Treust and F. Méhats , Dimension reduction for anisotropic Bose-Einstein condensates in the strong interaction regime, Nonlinearity, 28 (2015) , 755-772. doi: 10.1088/0951-7715/28/3/755. | |
N. Ben Abdallah , Y. Cai , C. Castella and F. Méhats , Second order averaging for the nonlinear Schrödinger equation with strongly anisotropic potential, Kinet. Relat. Models, 4 (2011) , 831-856. doi: 10.3934/krm.2011.4.831. | |
N. Ben Abdallah , F. Castella and F. Méhats , Time averaging for the strongly confined nonlinear Schrödinger equation, using almost-periodicity, J. Differ. Equations, 245 (2008) , 154-200. doi: 10.1016/j.jde.2008.02.002. | |
Y. Cai , M. Rosenkranz , Z. Lei and B. Bao , Mean-field regime of trapped dipolar Bose-Einstein condensates in one and two dimensions, Phys. Rev. A, 82 (2010) , 043623. | |
R. Carles, Semi-classical Analysis for Nonlinear Schrödinger Equations, World Scientific, 2008. | |
R. Carles , P. A. Markowich and C. Sparber , On the Gross-Pitaevskii equation for trapped dipolar quantum gases, Nonlinearity, 21 (2008) , 2569-2590. doi: 10.1088/0951-7715/21/11/006. | |
T. Cazenave, Semilinear Schrödinger Equations, vol. 10, AMS Bookstore, 2003. | |
A. Griesmaier, J. Werner, S. Hensler, J. Stuhler and T. Pfau, Bose-Einstein Condensation of Chromium, Phys. Rev. Lett., 2005. | |
B. Helffer, Théorie Spectrale Pour Des Opérateurs Globalement Elliptiques, Société mathématique de France, 1984. | |
L. Lahaye , C. Menotti , L. Santos , M. Lewenstein and T. Pfau , The physics of dipolar bosonic quantum gases, Rep. Prog. Phys., 72 (2009) , 126401. | |
M. Lu , N.Q. Burdick , S.H. Youn and B.H. Lev , A strongly dipolar Bose-Einstein condensate of dysprosium, Phy. Rev. Lett., 107 (2011) , 190401. | |
C.J. Pethick and H. Smith, Bose-Einstein Condensation in Dilute Gases, Cambridge University Press, 2002. | |
L.P. Pitaevskii and S. Stringari, Bose-Einstein Condensation, Clarendon Press, Oxford, 2003. | |
M. Rosenkranz , Y. Cai and W. Bao , Effective dipole-dipole interactions in multilayered dipolar Bose-Einstein condensates, Phys. Rev. A, 88 (2013) , 013616. | |
L. Santos , G. Shlyapnikov , P. Zoller and M. Lewenstein , Bose-Einstein condensation in trapped dipolar gases, Phys. Rev. Lett., 85 (2000) , 1791-1797. | |
S. Yi and L. You , Trapped atomic condensates with anisotropic interactions, Phys. Rev. A, 61 (2000) , 041604. | |
S. Yi and L. You , Trapped condensates of atoms with dipole interactions, Phys. Rev. A, 63 (2000) , 053607. |