
-
Previous Article
Asymptotic preserving and time diminishing schemes for rarefied gas dynamic
- KRM Home
- This Issue
-
Next Article
Blow-up, steady states and long time behaviour of excitatory-inhibitory nonlinear neuron models
Numerical study of a particle method for gradient flows
1. | Department of Mathematics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK |
2. | School of Mathematics, University of Manchester, Oxford Road, Manchester M13 9PL, UK |
3. | Mathematics Department, Technion--Israel Institute of Technology, Haifa 32000, Israel |
We study the numerical behaviour of a particle method for gradient flows involving linear and nonlinear diffusion. This method relies on the discretisation of the energy via non-overlapping balls centred at the particles. The resulting scheme preserves the gradient flow structure at the particle level and enables us to obtain a gradient descent formulation after time discretisation. We give several simulations to illustrate the validity of this method, as well as a detailed study of one-dimensional aggregation-diffusion equations.
References:
[1] |
L. Ambrosio, N. Gigli and G. Savaré,
Gradient Flows in Metric Spaces and in the Space of Probability Measures, Birkhäuser Basel, 2005.
doi: 10.1007/978-3-7643-8722-8. |
[2] |
L. Ambrosio and G. Savaré,
Gradient flows of probability measures, In Handbook of Differential Equations: Evolutionary Equations. North-Holland, 3 (2007), 1-136.
doi: 10.1016/S1874-5717(07)80004-1. |
[3] |
H. Attouch,
Variational Convergence for Functions and Operators, Applicable Mathematics. Pitman Advanced Publishing Program, 1984. |
[4] |
J. -P. Aubin and A. Cellina,
Differential Inclusions, Grundlehren der mathematischen Wissenschaften. Springer Berlin Heidelberg, 1984.
doi: 10.1007/978-3-642-69512-4. |
[5] |
J.-D. Benamou, G. Carlier, Q. Mérigot and E. Oudet,
Discretization of functionals involving the Monge-Ampère operator, Numer. Math., 134 (2016), 611-636.
doi: 10.1007/s00211-015-0781-y. |
[6] |
D. Benedetto, E. Caglioti, J. A. Carrillo and M. Pulvirenti,
A non-Maxwellian steady distribution for one-dimensional granular media, J. Statist. Phys., 91 (1998), 979-990.
doi: 10.1023/A:1023032000560. |
[7] |
M. Bessemoulin-Chatard and F. Filbet,
A finite volume scheme for nonlinear degenerate parabolic equations, SIAM J. Sci. Comput., 34 (2012), B559-B583.
doi: 10.1137/110853807. |
[8] |
A. Blanchet, V. Calvez and J. A. Carrillo,
Convergence of the mass-transport steepest descent scheme for the subcritical Patlak-Keller-Segel model, SIAM J. Numer. Anal., 46 (2008), 691-721.
doi: 10.1137/070683337. |
[9] |
H. Brézis,
Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert, North-Holland Mathematics Studies. Elsevier Science, 1973. |
[10] |
V. Calvez and T. Gallouët,
Particle approximation of the one dimensional Keller-Segel equation, stability and rigidity of the blow-up, Discrete Contin. Dyn. Syst., 36 (2016), 1175-1208.
doi: 10.3934/dcds.2016.36.1175. |
[11] |
V. Calvez, B. Perthame and M. Sharifi-tabar,
Modified Keller-Segel system and critical mass for the log interaction kernel, Contemp. Math., 429 (2007), 45-62.
doi: 10.1090/conm/429/08229. |
[12] |
J. A. Carrillo, A. Chertock and Y. Huang,
A finite-volume method for nonlinear nonlocal equations with a gradient flow structure, Commun. Comput. Phys., 17 (2015), 233-258.
doi: 10.4208/cicp.160214.010814a. |
[13] |
J. A. Carrillo, Y. -P. Choi and M. Hauray,
The derivation of swarming models: Mean-field limit and Wasserstein distances, In Collective Dynamics from Bacteria to Crowds: An Excursion Through Modeling, Analysis and Simulation. Springer Vienna, 553 (2014), 1-46.
doi: 10.1007/978-3-7091-1785-9_1. |
[14] |
J. A. Carrillo, M. Di Francesco and G. Toscani,
Strict contractivity of the 2-Wasserstein distance for the porous medium equation by mass-centering, Proc. Amer. Math. Soc., 135 (2007), 353-363.
doi: 10.1090/S0002-9939-06-08594-7. |
[15] |
J. A. Carrillo, R. J. McCann and C. Villani,
Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates, Rev. Mat. Iberoam., 19 (2003), 971-1018.
doi: 10.4171/RMI/376. |
[16] |
J. A. Carrillo and J. S. Moll,
Numerical simulation of diffusive and aggregation phenomena in nonlinear continuity equations by evolving diffeomorphisms, SIAM J. Sci. Comput., 31 (2009), 4305-4329.
doi: 10.1137/080739574. |
[17] |
J. A. Carrillo, F. S. Patacchini, P. Sternberg and G. Wolansky,
Convergence of a particle method for diffusive gradient flows in one dimension, SIAM J. Math. Anal., 48 (2016), 3708-3741.
doi: 10.1137/16M1077210. |
[18] |
P. Degond and F. J. Mustieles,
A deterministic approximation of diffusion equations using particles, SIAM J. Sci. Statist. Comput., 11 (1990), 293-310.
doi: 10.1137/0911018. |
[19] |
L. Gosse and G. Toscani,
Lagrangian numerical approximations to one-dimensional convolution-diffusion equations, SIAM J. Sci. Comput., 28 (2006), 1203-1227.
doi: 10.1137/050628015. |
[20] |
S. Graf and H. Luschgy,
Foundations of Quantization for Probability Distributions, Lecture Notes in Mathematics. Springer Berlin Heidelberg, 2000.
doi: 10.1007/BFb0103945. |
[21] |
R. Jordan, D. Kinderlehrer and F. Otto,
The variational formulation of the Fokker-Planck equation, SIAM J. Math. Anal., 29 (1998), 1-17.
doi: 10.1137/S0036141096303359. |
[22] |
O. Junge, H. Osberger and D. Matthes,
A fully discrete variational scheme for solving nonlinear Fokker-Planck equations in higher space dimensions,
Preprint, arXiv: 1509.07721. |
[23] |
P.-L. Lions and S. Mas-Gallic,
Une méthode particulaire déterministe pour des équations diffusives non linéaires, C. R. Acad. Sci. Paris Sér. Ⅰ Math., 332 (2001), 369-376.
doi: 10.1016/S0764-4442(00)01795-X. |
[24] |
S. Mas-Gallic,
The diffusion velocity method: A deterministic way of moving the nodes for solving diffusion equations, Transp. Theory Stat. Phys., 31 (2002), 595-605.
doi: 10.1081/TT-120015516. |
[25] |
R. J. McCann,
A convexity principle for interacting gases, Adv. Math., 128 (1997), 153-179.
doi: 10.1006/aima.1997.1634. |
[26] |
R. J. McCann,
A Convexity Theory for Interacting Gases and Equilibrium Crystals, PhD thesis, Princeton University, 1994. |
[27] |
A. Mielke,
On evolutionary Gamma-convergence for gradient systems, In Macroscopic and Large Scale Phenomena: Coarse Graining, Mean Field Limits and Ergodicity. Springer, 3 (2016), 187-249.
doi: 10.1007/978-3-319-26883-5_3. |
[28] |
H. Osberger and D. Matthes,
A convergent Lagrangian discretization for a nonlinear fourth order equation, Found. Comput. Math., (2015), 1-54.
doi: 10.1007/s10208-015-9284-6. |
[29] |
H. Osbergers and D. Matthes,
Convergence of a fully discrete variational scheme for a thin-film equation, Accepted in Radon Ser. Comput. Appl. Math., (2015).
|
[30] |
H. Osberger and D. Matthes,
Convergence of a variational Lagrangian scheme for a nonlinear drift diffusion equation, ESAIM Math. Model. Numer. Anal., 48 (2014), 697-726.
doi: 10.1051/m2an/2013126. |
[31] |
F. Otto,
The geometry of dissipative evolution equations: The porous medium equation, Comm. Partial Differential Equations, 26 (2001), 101-174.
doi: 10.1081/PDE-100002243. |
[32] |
G. Russo,
A particle method for collisional kinetic equations. Ⅰ. Basic theory and one-dimensional results, J. Comput. Phys., 87 (1990), 270-300.
doi: 10.1016/0021-9991(90)90254-X. |
[33] |
G. Russo,
Deterministic diffusion of particles, Comm. Pure Appl. Math., 43 (1990), 697-733.
doi: 10.1002/cpa.3160430602. |
[34] |
E. Sandier and S. Serfaty,
Gamma-convergence of gradient flows with applications to Ginzburg-Landau, Comm. Pure Appl. Math., 57 (2004), 1627-1672.
doi: 10.1002/cpa.20046. |
[35] |
S. Serfaty,
Gamma-convergence of gradient flows on Hilbert and metric spaces and applications, Discrete Contin. Dyn. Syst, 31 (2011), 1427-1451.
doi: 10.3934/dcds.2011.31.1427. |
[36] |
C. M. Topaz, A. L. Bertozzi and M. A. Lewis,
A nonlocal continuum model for biological aggregation, Bull. Math. Biol., 68 (2006), 1601-1623.
doi: 10.1007/s11538-006-9088-6. |
[37] |
J. L. Vázquez,
The Porous Medium Equation, Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, Oxford, 2007. |
[38] |
C. Villani,
Topics in Optimal Transportation, Graduate studies in mathematics. American Mathematical Society, Providence (R. I. ), 2003.
doi: 10.1090/gsm/058. |
show all references
References:
[1] |
L. Ambrosio, N. Gigli and G. Savaré,
Gradient Flows in Metric Spaces and in the Space of Probability Measures, Birkhäuser Basel, 2005.
doi: 10.1007/978-3-7643-8722-8. |
[2] |
L. Ambrosio and G. Savaré,
Gradient flows of probability measures, In Handbook of Differential Equations: Evolutionary Equations. North-Holland, 3 (2007), 1-136.
doi: 10.1016/S1874-5717(07)80004-1. |
[3] |
H. Attouch,
Variational Convergence for Functions and Operators, Applicable Mathematics. Pitman Advanced Publishing Program, 1984. |
[4] |
J. -P. Aubin and A. Cellina,
Differential Inclusions, Grundlehren der mathematischen Wissenschaften. Springer Berlin Heidelberg, 1984.
doi: 10.1007/978-3-642-69512-4. |
[5] |
J.-D. Benamou, G. Carlier, Q. Mérigot and E. Oudet,
Discretization of functionals involving the Monge-Ampère operator, Numer. Math., 134 (2016), 611-636.
doi: 10.1007/s00211-015-0781-y. |
[6] |
D. Benedetto, E. Caglioti, J. A. Carrillo and M. Pulvirenti,
A non-Maxwellian steady distribution for one-dimensional granular media, J. Statist. Phys., 91 (1998), 979-990.
doi: 10.1023/A:1023032000560. |
[7] |
M. Bessemoulin-Chatard and F. Filbet,
A finite volume scheme for nonlinear degenerate parabolic equations, SIAM J. Sci. Comput., 34 (2012), B559-B583.
doi: 10.1137/110853807. |
[8] |
A. Blanchet, V. Calvez and J. A. Carrillo,
Convergence of the mass-transport steepest descent scheme for the subcritical Patlak-Keller-Segel model, SIAM J. Numer. Anal., 46 (2008), 691-721.
doi: 10.1137/070683337. |
[9] |
H. Brézis,
Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert, North-Holland Mathematics Studies. Elsevier Science, 1973. |
[10] |
V. Calvez and T. Gallouët,
Particle approximation of the one dimensional Keller-Segel equation, stability and rigidity of the blow-up, Discrete Contin. Dyn. Syst., 36 (2016), 1175-1208.
doi: 10.3934/dcds.2016.36.1175. |
[11] |
V. Calvez, B. Perthame and M. Sharifi-tabar,
Modified Keller-Segel system and critical mass for the log interaction kernel, Contemp. Math., 429 (2007), 45-62.
doi: 10.1090/conm/429/08229. |
[12] |
J. A. Carrillo, A. Chertock and Y. Huang,
A finite-volume method for nonlinear nonlocal equations with a gradient flow structure, Commun. Comput. Phys., 17 (2015), 233-258.
doi: 10.4208/cicp.160214.010814a. |
[13] |
J. A. Carrillo, Y. -P. Choi and M. Hauray,
The derivation of swarming models: Mean-field limit and Wasserstein distances, In Collective Dynamics from Bacteria to Crowds: An Excursion Through Modeling, Analysis and Simulation. Springer Vienna, 553 (2014), 1-46.
doi: 10.1007/978-3-7091-1785-9_1. |
[14] |
J. A. Carrillo, M. Di Francesco and G. Toscani,
Strict contractivity of the 2-Wasserstein distance for the porous medium equation by mass-centering, Proc. Amer. Math. Soc., 135 (2007), 353-363.
doi: 10.1090/S0002-9939-06-08594-7. |
[15] |
J. A. Carrillo, R. J. McCann and C. Villani,
Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates, Rev. Mat. Iberoam., 19 (2003), 971-1018.
doi: 10.4171/RMI/376. |
[16] |
J. A. Carrillo and J. S. Moll,
Numerical simulation of diffusive and aggregation phenomena in nonlinear continuity equations by evolving diffeomorphisms, SIAM J. Sci. Comput., 31 (2009), 4305-4329.
doi: 10.1137/080739574. |
[17] |
J. A. Carrillo, F. S. Patacchini, P. Sternberg and G. Wolansky,
Convergence of a particle method for diffusive gradient flows in one dimension, SIAM J. Math. Anal., 48 (2016), 3708-3741.
doi: 10.1137/16M1077210. |
[18] |
P. Degond and F. J. Mustieles,
A deterministic approximation of diffusion equations using particles, SIAM J. Sci. Statist. Comput., 11 (1990), 293-310.
doi: 10.1137/0911018. |
[19] |
L. Gosse and G. Toscani,
Lagrangian numerical approximations to one-dimensional convolution-diffusion equations, SIAM J. Sci. Comput., 28 (2006), 1203-1227.
doi: 10.1137/050628015. |
[20] |
S. Graf and H. Luschgy,
Foundations of Quantization for Probability Distributions, Lecture Notes in Mathematics. Springer Berlin Heidelberg, 2000.
doi: 10.1007/BFb0103945. |
[21] |
R. Jordan, D. Kinderlehrer and F. Otto,
The variational formulation of the Fokker-Planck equation, SIAM J. Math. Anal., 29 (1998), 1-17.
doi: 10.1137/S0036141096303359. |
[22] |
O. Junge, H. Osberger and D. Matthes,
A fully discrete variational scheme for solving nonlinear Fokker-Planck equations in higher space dimensions,
Preprint, arXiv: 1509.07721. |
[23] |
P.-L. Lions and S. Mas-Gallic,
Une méthode particulaire déterministe pour des équations diffusives non linéaires, C. R. Acad. Sci. Paris Sér. Ⅰ Math., 332 (2001), 369-376.
doi: 10.1016/S0764-4442(00)01795-X. |
[24] |
S. Mas-Gallic,
The diffusion velocity method: A deterministic way of moving the nodes for solving diffusion equations, Transp. Theory Stat. Phys., 31 (2002), 595-605.
doi: 10.1081/TT-120015516. |
[25] |
R. J. McCann,
A convexity principle for interacting gases, Adv. Math., 128 (1997), 153-179.
doi: 10.1006/aima.1997.1634. |
[26] |
R. J. McCann,
A Convexity Theory for Interacting Gases and Equilibrium Crystals, PhD thesis, Princeton University, 1994. |
[27] |
A. Mielke,
On evolutionary Gamma-convergence for gradient systems, In Macroscopic and Large Scale Phenomena: Coarse Graining, Mean Field Limits and Ergodicity. Springer, 3 (2016), 187-249.
doi: 10.1007/978-3-319-26883-5_3. |
[28] |
H. Osberger and D. Matthes,
A convergent Lagrangian discretization for a nonlinear fourth order equation, Found. Comput. Math., (2015), 1-54.
doi: 10.1007/s10208-015-9284-6. |
[29] |
H. Osbergers and D. Matthes,
Convergence of a fully discrete variational scheme for a thin-film equation, Accepted in Radon Ser. Comput. Appl. Math., (2015).
|
[30] |
H. Osberger and D. Matthes,
Convergence of a variational Lagrangian scheme for a nonlinear drift diffusion equation, ESAIM Math. Model. Numer. Anal., 48 (2014), 697-726.
doi: 10.1051/m2an/2013126. |
[31] |
F. Otto,
The geometry of dissipative evolution equations: The porous medium equation, Comm. Partial Differential Equations, 26 (2001), 101-174.
doi: 10.1081/PDE-100002243. |
[32] |
G. Russo,
A particle method for collisional kinetic equations. Ⅰ. Basic theory and one-dimensional results, J. Comput. Phys., 87 (1990), 270-300.
doi: 10.1016/0021-9991(90)90254-X. |
[33] |
G. Russo,
Deterministic diffusion of particles, Comm. Pure Appl. Math., 43 (1990), 697-733.
doi: 10.1002/cpa.3160430602. |
[34] |
E. Sandier and S. Serfaty,
Gamma-convergence of gradient flows with applications to Ginzburg-Landau, Comm. Pure Appl. Math., 57 (2004), 1627-1672.
doi: 10.1002/cpa.20046. |
[35] |
S. Serfaty,
Gamma-convergence of gradient flows on Hilbert and metric spaces and applications, Discrete Contin. Dyn. Syst, 31 (2011), 1427-1451.
doi: 10.3934/dcds.2011.31.1427. |
[36] |
C. M. Topaz, A. L. Bertozzi and M. A. Lewis,
A nonlocal continuum model for biological aggregation, Bull. Math. Biol., 68 (2006), 1601-1623.
doi: 10.1007/s11538-006-9088-6. |
[37] |
J. L. Vázquez,
The Porous Medium Equation, Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, Oxford, 2007. |
[38] |
C. Villani,
Topics in Optimal Transportation, Graduate studies in mathematics. American Mathematical Society, Providence (R. I. ), 2003.
doi: 10.1090/gsm/058. |










[1] |
Bertram Düring, Daniel Matthes, Josipa Pina Milišić. A gradient flow scheme for nonlinear fourth order equations. Discrete and Continuous Dynamical Systems - B, 2010, 14 (3) : 935-959. doi: 10.3934/dcdsb.2010.14.935 |
[2] |
Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete and Continuous Dynamical Systems, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355 |
[3] |
Zheng Sun, José A. Carrillo, Chi-Wang Shu. An entropy stable high-order discontinuous Galerkin method for cross-diffusion gradient flow systems. Kinetic and Related Models, 2019, 12 (4) : 885-908. doi: 10.3934/krm.2019033 |
[4] |
Matthias Erbar, Max Fathi, Vaios Laschos, André Schlichting. Gradient flow structure for McKean-Vlasov equations on discrete spaces. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 6799-6833. doi: 10.3934/dcds.2016096 |
[5] |
François James, Nicolas Vauchelet. Equivalence between duality and gradient flow solutions for one-dimensional aggregation equations. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1355-1382. doi: 10.3934/dcds.2016.36.1355 |
[6] |
Samir Salem. A gradient flow approach of propagation of chaos. Discrete and Continuous Dynamical Systems, 2020, 40 (10) : 5729-5754. doi: 10.3934/dcds.2020243 |
[7] |
Timothy Blass, Rafael De La Llave, Enrico Valdinoci. A comparison principle for a Sobolev gradient semi-flow. Communications on Pure and Applied Analysis, 2011, 10 (1) : 69-91. doi: 10.3934/cpaa.2011.10.69 |
[8] |
Yanfei Wang, Qinghua Ma. A gradient method for regularizing retrieval of aerosol particle size distribution function. Journal of Industrial and Management Optimization, 2009, 5 (1) : 115-126. doi: 10.3934/jimo.2009.5.115 |
[9] |
Wenqing Hu, Chris Junchi Li. A convergence analysis of the perturbed compositional gradient flow: Averaging principle and normal deviations. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 4951-4977. doi: 10.3934/dcds.2018216 |
[10] |
Jonathan Zinsl. The gradient flow of a generalized Fisher information functional with respect to modified Wasserstein distances. Discrete and Continuous Dynamical Systems - S, 2017, 10 (4) : 919-933. doi: 10.3934/dcdss.2017047 |
[11] |
K.H. Wong, C. Myburgh, L. Omari. A gradient flow approach for computing jump linear quadratic optimal feedback gains. Discrete and Continuous Dynamical Systems, 2000, 6 (4) : 803-808. doi: 10.3934/dcds.2000.6.803 |
[12] |
Dmitrii Rachinskii. Realization of arbitrary hysteresis by a low-dimensional gradient flow. Discrete and Continuous Dynamical Systems - B, 2016, 21 (1) : 227-243. doi: 10.3934/dcdsb.2016.21.227 |
[13] |
Rafael Ayala, Jose Antonio Vilches, Gregor Jerše, Neža Mramor Kosta. Discrete gradient fields on infinite complexes. Discrete and Continuous Dynamical Systems, 2011, 30 (3) : 623-639. doi: 10.3934/dcds.2011.30.623 |
[14] |
Wen Wang, Dapeng Xie, Hui Zhou. Local Aronson-Bénilan gradient estimates and Harnack inequality for the porous medium equation along Ricci flow. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1957-1974. doi: 10.3934/cpaa.2018093 |
[15] |
Laurence Guillot, Maïtine Bergounioux. Existence and uniqueness results for the gradient vector flow and geodesic active contours mixed model. Communications on Pure and Applied Analysis, 2009, 8 (4) : 1333-1349. doi: 10.3934/cpaa.2009.8.1333 |
[16] |
Robert I. McLachlan, G. R. W. Quispel. Discrete gradient methods have an energy conservation law. Discrete and Continuous Dynamical Systems, 2014, 34 (3) : 1099-1104. doi: 10.3934/dcds.2014.34.1099 |
[17] |
Paul Deuring, Stanislav Kračmar, Šárka Nečasová. A linearized system describing stationary incompressible viscous flow around rotating and translating bodies: Improved decay estimates of the velocity and its gradient. Conference Publications, 2011, 2011 (Special) : 351-361. doi: 10.3934/proc.2011.2011.351 |
[18] |
Jianjun Zhang, Yunyi Hu, James G. Nagy. A scaled gradient method for digital tomographic image reconstruction. Inverse Problems and Imaging, 2018, 12 (1) : 239-259. doi: 10.3934/ipi.2018010 |
[19] |
Stefan Kindermann. Convergence of the gradient method for ill-posed problems. Inverse Problems and Imaging, 2017, 11 (4) : 703-720. doi: 10.3934/ipi.2017033 |
[20] |
Daniela Saxenhuber, Ronny Ramlau. A gradient-based method for atmospheric tomography. Inverse Problems and Imaging, 2016, 10 (3) : 781-805. doi: 10.3934/ipi.2016021 |
2020 Impact Factor: 1.432
Tools
Article outline
Figures and Tables
[Back to Top]