Merging and separation of flocking groups are often observed in our natural complex systems. In this paper, we employ the Cucker-Smale particle model to model such merging and separation phenomena. For definiteness, we consider the interaction of two homogeneous Cucker-Smale ensembles and present several sufficient frameworks for mono-cluster flocking, bi-cluster flocking and partial flocking in terms of coupling strength, communication weight, and initial configurations.
Citation: |
S. Ahn
, H. Choi
, S.-Y. Ha
and H. Lee
, On collision-avoiding initial configurations to Cucker-Smale type flocking models, Commun. Math. Sci., 10 (2012)
, 625-643.
doi: 10.4310/CMS.2012.v10.n2.a10.![]() ![]() ![]() |
|
S. Ahn
and S.-Y. Ha
, Stochastic flocking dynamics of the Cucker-Smale model with multiplicative white noises, J. Math. Phys., 51 (2010)
, 103301, 17pp.
doi: 10.1063/1.3496895.![]() ![]() ![]() |
|
F. Bolley
, J. A. Canizo
and J. A. Carrillo
, Stochastic mean-field limit: Non-Lipschitz forces and swarming, Math. Mod. Meth. Appl. Sci., 21 (2011)
, 2179-2210.
doi: 10.1142/S0218202511005702.![]() ![]() ![]() |
|
J. A. Canizo
, J. A. Carrillo
and J. Rosado
, A well-posedness theory in measures for some kinetic models of collective motion, Math. Mod., Meth. Appl. Sci., 21 (2011)
, 515-539.
doi: 10.1142/S0218202511005131.![]() ![]() ![]() |
|
J. A. Carrillo
, Y.-P. Choi
and M. Hauray
, Local well-posedness of the generalized Cucker-Smale model with singular kernels, ESIAM Proceedings and Surveys, 47 (2014)
, 17-35.
doi: 10.1051/proc/201447002.![]() ![]() ![]() |
|
J. A. Carrillo
, M. R. D' Orsogna
and V. Panferov
, Double milling in self-propelled swarms from kinetic theory, Kinetic Relat. Models, 2 (2009)
, 363-378.
doi: 10.3934/krm.2009.2.363.![]() ![]() ![]() |
|
J. A. Carrillo
, M. Fornasier
, J. Rosado
and G. Toscani
, Asymptotic flocking dynamics for the kinetic Cucker-Smale model, SIAM J. Math. Anal., 42 (2010)
, 218-236.
doi: 10.1137/090757290.![]() ![]() ![]() |
|
J. A. Carrillo
, A. Klar
, S. Martin
and S. Tiwari
, Self-propelled interacting particle systems with roosting force, Math. Mod. Meth. Appl. Sci., 20 (2010)
, 1533-1552.
doi: 10.1142/S0218202510004684.![]() ![]() ![]() |
|
J. Cho
, S.-Y. Ha
, F. Huang
, C. Jin
and D. Ko
, Emergence of bi-cluster flocking for the Cucker-Smale model, Math. Models Methods Appl. Sci., 26 (2016)
, 1191-1218.
doi: 10.1142/S0218202516500287.![]() ![]() ![]() |
|
J. Cho
, S.-Y. Ha
, F. Huang
, C. Jin
and D. Ko
, Emergence of bi-cluster flocking for agent-based models with unit speed constraint, Anal. Appl., 14 (2016)
, 39-73.
doi: 10.1142/S0219530515400023.![]() ![]() ![]() |
|
F. Cucker
and J.-G. Dong
, Avoiding collisions in flocks, IEEE Trans. Autom. Control, 55 (2010)
, 1238-1243.
doi: 10.1109/TAC.2010.2042355.![]() ![]() ![]() |
|
F. Cucker
and F. C. Huepe
, Flocking with informed agents, MathS in Action, 1 (2008)
, 1-25.
doi: 10.5802/msia.1.![]() ![]() ![]() |
|
F. Cucker
and E. Mordecki
, Flocking in noisy environments, J. Math. Pures Appl., 89 (2008)
, 278-296.
doi: 10.1016/j.matpur.2007.12.002.![]() ![]() ![]() |
|
F. Cucker
and S. Smale
, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007)
, 852-862.
doi: 10.1109/TAC.2007.895842.![]() ![]() ![]() |
|
P. Degond
and T. Yang
, Diffusion in a continuum model of self-propelled particles with alignment interaction, Math. Mod. Meth. Appl. Sci., 20 (2010)
, 1459-1490.
doi: 10.1142/S0218202510004659.![]() ![]() ![]() |
|
P. Degond
and S. Motsch
, Macroscopic limit of self-driven particles with orientation interaction, C.R. Math. Acad. Sci. Paris, 345 (2007)
, 555-560.
doi: 10.1016/j.crma.2007.10.024.![]() ![]() ![]() |
|
P. Degond
and S. Motsch
, Large-scale dynamics of the Persistent Turing Walker model of fish behavior, J. Stat. Phys., 131 (2008)
, 989-1021.
doi: 10.1007/s10955-008-9529-8.![]() ![]() ![]() |
|
P. Degond
and S. Motsch
, Continuum limit of self-driven particles with orientation interaction, Math. Mod. Meth. Appl. Sci., 18 (2008)
, 1193-1215.
doi: 10.1142/S0218202508003005.![]() ![]() ![]() |
|
R. Duan
, M. Fornasier
and G. Toscani
, A kinetic flocking model with diffusion, Commun. Math. Phys., 300 (2010)
, 95-145.
doi: 10.1007/s00220-010-1110-z.![]() ![]() ![]() |
|
M. Fornasier
, J. Haskovec
and G. Toscani
, Fluid dynamic description of flocking via Povzner-Boltzmann equation, Phys. D, 240 (2011)
, 21-31.
doi: 10.1016/j.physd.2010.08.003.![]() ![]() ![]() |
|
S.-Y. Ha
, T. Ha
and J. Kim
, Asymptotic flocking dynamics for the Cucker-Smale model with the Rayleigh friction, J. Phys. A: Math. Theor., 43 (2010)
, 315201, 19pp.
doi: 10.1088/1751-8113/43/31/315201.![]() ![]() ![]() |
|
S.-Y. Ha
, K. Lee
and D. Levy
, Emergence of time-asymptotic flocking in a stochastic Cucker-Smale system, Commun. Math. Sci., 7 (2009)
, 453-469.
![]() ![]() |
|
S.-Y. Ha
and J.-G. Liu
, A simple proof of Cucker-Smale flocking dynamics and mean field limit, Commun. Math. Sci., 7 (2009)
, 297-325.
![]() ![]() |
|
S.-Y. Ha
and M. Slemrod
, Flocking dynamics of a singularly perturbed oscillator chain and the Cucker-Smale system, J. Dyn. Diff. Equat., 22 (2010)
, 325-330.
doi: 10.1007/s10884-009-9142-9.![]() ![]() ![]() |
|
S.-Y. Ha
and E. Tadmor
, From particle to kinetic and hydrodynamic description of flocking, Kinetic Relat. Models, 1 (2008)
, 415-435.
doi: 10.3934/krm.2008.1.415.![]() ![]() ![]() |
|
Y. Kuramoto
, International symposium on mathematical problems in mathematical physics, Lecture Notes Theor. Phys., 39 (1975)
, 420-422.
![]() ![]() |
|
N. E. Leonard
, D. A. Paley
, F. Lekien
, R. Sepulchre
, D. M. Fratantoni
and R. E. Davis
, Collective motion, sensor networks and ocean sampling, Proc. IEEE, 95 (2007)
, 48-74.
![]() |
|
Z. Li
and X. Xue
, Cucker-Smale flocking under rooted leadership with fixed and switching topologies, SIAM J. Appl. Math., 70 (2010)
, 3156-3174.
doi: 10.1137/100791774.![]() ![]() ![]() |
|
S. Motsch
and E. Tadmor
, A new model for self-organized dynamics and its flocking behavior, J. Stat. Phys., 144 (2011)
, 923-947.
doi: 10.1007/s10955-011-0285-9.![]() ![]() ![]() |
|
D. A. Paley
, N. E. Leonard
, R. Sepulchre
, D. Grunbaum
and J. K. Parrish
, Oscillator models and collective motion, IEEE Control Sys., 27 (2007)
, 89-105.
![]() |
|
J. Park
, H. Kim
and S.-Y. Ha
, Cucker-Smale flocking with inter-particle bonding forces, IEEE Tran. Automat. Control, 55 (2010)
, 2617-2623.
doi: 10.1109/TAC.2010.2061070.![]() ![]() ![]() |
|
L. Perea
, P. Elosegui
and G. Gómez
, Extension of the Cucker-Smale control law to space flight formation, J. Guidance Control Dynamics, 32 (2009)
, 526-536.
![]() |
|
J. Peszek
, Existence of piecewise weak solutions of discrete Cucker-Smale flocking model with a singular communication weight, J. Differential Equations, 257 (2014)
, 2900-2925.
doi: 10.1016/j.jde.2014.06.003.![]() ![]() ![]() |
|
J. Shen
, Cucker-Smale flocking under hierarchical leadership, SIAM J. Appl. Math., 68 (2007)
, 694-719.
doi: 10.1137/060673254.![]() ![]() ![]() |
|
J. Toner
and Y. Tu
, Flocks, herds, and Schools: A quantitative theory of flocking, Phys. Rev. E, 58 (1998)
, 4828-4858.
doi: 10.1103/PhysRevE.58.4828.![]() ![]() ![]() |
|
C. M. Topaz
and A. L. Bertozzi
, Swarming patterns in a two-dimensional kinematic model for biological groups, SIAM J. Appl. Math., 65 (2004)
, 152-174.
doi: 10.1137/S0036139903437424.![]() ![]() ![]() |
|
T. Vicsek
, A. Czirók
, E. Ben-Jacob
, I. Cohen
and O. Schochet
, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 75 (1995)
, 1226-1229.
doi: 10.1103/PhysRevLett.75.1226.![]() ![]() ![]() |
|
A. T. Winfree
, Biological rhythms and the behavior of populations of coupled oscillators, J. Theor. Biol., 16 (1967)
, 15-42.
![]() |