September  2017, 10(3): 689-723. doi: 10.3934/krm.2017028

Emergent dynamics in the interactions of Cucker-Smale ensembles

1. 

Department of Mathematical Sciences and Research Institute of Mathematics, Seoul National University, Seoul 08826, Korea

2. 

Department of Mathematical Sciences, Seoul National University, Seoul 08826, Korea

* Corresponding author: Yinglong Zhang

Received  January 2016 Revised  June 2016 Published  December 2016

Fund Project: The work of S.-Y. Ha and X. Zhang is supported by the Samsung Science and Technology Foundation under Project Number SSTF-BA1401-03. This work has been completed while the first author was visiting NCTS, National Taiwan University. He would like to thank NCTS for their hospitality during the stay. The work of D. Ko is supported by the fellowship of TJ Park Foundation. The work of Y. Zhang is partially supported by a National Research Foundation of Korea grant (2014R1A2A2A05002096) funded by the Korean government

Merging and separation of flocking groups are often observed in our natural complex systems. In this paper, we employ the Cucker-Smale particle model to model such merging and separation phenomena. For definiteness, we consider the interaction of two homogeneous Cucker-Smale ensembles and present several sufficient frameworks for mono-cluster flocking, bi-cluster flocking and partial flocking in terms of coupling strength, communication weight, and initial configurations.

Citation: Seung-Yeal Ha, Dongnam Ko, Yinglong Zhang, Xiongtao Zhang. Emergent dynamics in the interactions of Cucker-Smale ensembles. Kinetic & Related Models, 2017, 10 (3) : 689-723. doi: 10.3934/krm.2017028
References:
[1]

S. AhnH. ChoiS.-Y. Ha and H. Lee, On collision-avoiding initial configurations to Cucker-Smale type flocking models, Commun. Math. Sci., 10 (2012), 625-643.  doi: 10.4310/CMS.2012.v10.n2.a10.  Google Scholar

[2]

S. Ahn and S.-Y. Ha, Stochastic flocking dynamics of the Cucker-Smale model with multiplicative white noises, J. Math. Phys., 51 (2010), 103301, 17pp.  doi: 10.1063/1.3496895.  Google Scholar

[3]

F. BolleyJ. A. Canizo and J. A. Carrillo, Stochastic mean-field limit: Non-Lipschitz forces and swarming, Math. Mod. Meth. Appl. Sci., 21 (2011), 2179-2210.  doi: 10.1142/S0218202511005702.  Google Scholar

[4]

J. A. CanizoJ. A. Carrillo and J. Rosado, A well-posedness theory in measures for some kinetic models of collective motion, Math. Mod., Meth. Appl. Sci., 21 (2011), 515-539.  doi: 10.1142/S0218202511005131.  Google Scholar

[5]

J. A. CarrilloY.-P. Choi and M. Hauray, Local well-posedness of the generalized Cucker-Smale model with singular kernels, ESIAM Proceedings and Surveys, 47 (2014), 17-35.  doi: 10.1051/proc/201447002.  Google Scholar

[6]

J. A. CarrilloM. R. D' Orsogna and V. Panferov, Double milling in self-propelled swarms from kinetic theory, Kinetic Relat. Models, 2 (2009), 363-378.  doi: 10.3934/krm.2009.2.363.  Google Scholar

[7]

J. A. CarrilloM. FornasierJ. Rosado and G. Toscani, Asymptotic flocking dynamics for the kinetic Cucker-Smale model, SIAM J. Math. Anal., 42 (2010), 218-236.  doi: 10.1137/090757290.  Google Scholar

[8]

J. A. CarrilloA. KlarS. Martin and S. Tiwari, Self-propelled interacting particle systems with roosting force, Math. Mod. Meth. Appl. Sci., 20 (2010), 1533-1552.  doi: 10.1142/S0218202510004684.  Google Scholar

[9]

J. ChoS.-Y. HaF. HuangC. Jin and D. Ko, Emergence of bi-cluster flocking for the Cucker-Smale model, Math. Models Methods Appl. Sci., 26 (2016), 1191-1218.  doi: 10.1142/S0218202516500287.  Google Scholar

[10]

J. ChoS.-Y. HaF. HuangC. Jin and D. Ko, Emergence of bi-cluster flocking for agent-based models with unit speed constraint, Anal. Appl., 14 (2016), 39-73.  doi: 10.1142/S0219530515400023.  Google Scholar

[11]

F. Cucker and J.-G. Dong, Avoiding collisions in flocks, IEEE Trans. Autom. Control, 55 (2010), 1238-1243.  doi: 10.1109/TAC.2010.2042355.  Google Scholar

[12]

F. Cucker and F. C. Huepe, Flocking with informed agents, MathS in Action, 1 (2008), 1-25.  doi: 10.5802/msia.1.  Google Scholar

[13]

F. Cucker and E. Mordecki, Flocking in noisy environments, J. Math. Pures Appl., 89 (2008), 278-296.  doi: 10.1016/j.matpur.2007.12.002.  Google Scholar

[14]

F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-862.  doi: 10.1109/TAC.2007.895842.  Google Scholar

[15]

P. Degond and T. Yang, Diffusion in a continuum model of self-propelled particles with alignment interaction, Math. Mod. Meth. Appl. Sci., 20 (2010), 1459-1490.  doi: 10.1142/S0218202510004659.  Google Scholar

[16]

P. Degond and S. Motsch, Macroscopic limit of self-driven particles with orientation interaction, C.R. Math. Acad. Sci. Paris, 345 (2007), 555-560.  doi: 10.1016/j.crma.2007.10.024.  Google Scholar

[17]

P. Degond and S. Motsch, Large-scale dynamics of the Persistent Turing Walker model of fish behavior, J. Stat. Phys., 131 (2008), 989-1021.  doi: 10.1007/s10955-008-9529-8.  Google Scholar

[18]

P. Degond and S. Motsch, Continuum limit of self-driven particles with orientation interaction, Math. Mod. Meth. Appl. Sci., 18 (2008), 1193-1215.  doi: 10.1142/S0218202508003005.  Google Scholar

[19]

R. DuanM. Fornasier and G. Toscani, A kinetic flocking model with diffusion, Commun. Math. Phys., 300 (2010), 95-145.  doi: 10.1007/s00220-010-1110-z.  Google Scholar

[20]

M. FornasierJ. Haskovec and G. Toscani, Fluid dynamic description of flocking via Povzner-Boltzmann equation, Phys. D, 240 (2011), 21-31.  doi: 10.1016/j.physd.2010.08.003.  Google Scholar

[21]

S.-Y. HaT. Ha and J. Kim, Asymptotic flocking dynamics for the Cucker-Smale model with the Rayleigh friction, J. Phys. A: Math. Theor., 43 (2010), 315201, 19pp.  doi: 10.1088/1751-8113/43/31/315201.  Google Scholar

[22]

S.-Y. HaK. Lee and D. Levy, Emergence of time-asymptotic flocking in a stochastic Cucker-Smale system, Commun. Math. Sci., 7 (2009), 453-469.   Google Scholar

[23]

S.-Y. Ha and J.-G. Liu, A simple proof of Cucker-Smale flocking dynamics and mean field limit, Commun. Math. Sci., 7 (2009), 297-325.   Google Scholar

[24]

S.-Y. Ha and M. Slemrod, Flocking dynamics of a singularly perturbed oscillator chain and the Cucker-Smale system, J. Dyn. Diff. Equat., 22 (2010), 325-330.  doi: 10.1007/s10884-009-9142-9.  Google Scholar

[25]

S.-Y. Ha and E. Tadmor, From particle to kinetic and hydrodynamic description of flocking, Kinetic Relat. Models, 1 (2008), 415-435.  doi: 10.3934/krm.2008.1.415.  Google Scholar

[26]

Y. Kuramoto, International symposium on mathematical problems in mathematical physics, Lecture Notes Theor. Phys., 39 (1975), 420-422.   Google Scholar

[27]

N. E. LeonardD. A. PaleyF. LekienR. SepulchreD. M. Fratantoni and R. E. Davis, Collective motion, sensor networks and ocean sampling, Proc. IEEE, 95 (2007), 48-74.   Google Scholar

[28]

Z. Li and X. Xue, Cucker-Smale flocking under rooted leadership with fixed and switching topologies, SIAM J. Appl. Math., 70 (2010), 3156-3174.  doi: 10.1137/100791774.  Google Scholar

[29]

S. Motsch and E. Tadmor, A new model for self-organized dynamics and its flocking behavior, J. Stat. Phys., 144 (2011), 923-947.  doi: 10.1007/s10955-011-0285-9.  Google Scholar

[30]

D. A. PaleyN. E. LeonardR. SepulchreD. Grunbaum and J. K. Parrish, Oscillator models and collective motion, IEEE Control Sys., 27 (2007), 89-105.   Google Scholar

[31]

J. ParkH. Kim and S.-Y. Ha, Cucker-Smale flocking with inter-particle bonding forces, IEEE Tran. Automat. Control, 55 (2010), 2617-2623.  doi: 10.1109/TAC.2010.2061070.  Google Scholar

[32]

L. PereaP. Elosegui and G. Gómez, Extension of the Cucker-Smale control law to space flight formation, J. Guidance Control Dynamics, 32 (2009), 526-536.   Google Scholar

[33]

J. Peszek, Existence of piecewise weak solutions of discrete Cucker-Smale flocking model with a singular communication weight, J. Differential Equations, 257 (2014), 2900-2925.  doi: 10.1016/j.jde.2014.06.003.  Google Scholar

[34]

J. Shen, Cucker-Smale flocking under hierarchical leadership, SIAM J. Appl. Math., 68 (2007), 694-719.  doi: 10.1137/060673254.  Google Scholar

[35]

J. Toner and Y. Tu, Flocks, herds, and Schools: A quantitative theory of flocking, Phys. Rev. E, 58 (1998), 4828-4858.  doi: 10.1103/PhysRevE.58.4828.  Google Scholar

[36]

C. M. Topaz and A. L. Bertozzi, Swarming patterns in a two-dimensional kinematic model for biological groups, SIAM J. Appl. Math., 65 (2004), 152-174.  doi: 10.1137/S0036139903437424.  Google Scholar

[37]

T. VicsekA. CzirókE. Ben-JacobI. Cohen and O. Schochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 75 (1995), 1226-1229.  doi: 10.1103/PhysRevLett.75.1226.  Google Scholar

[38]

A. T. Winfree, Biological rhythms and the behavior of populations of coupled oscillators, J. Theor. Biol., 16 (1967), 15-42.   Google Scholar

show all references

References:
[1]

S. AhnH. ChoiS.-Y. Ha and H. Lee, On collision-avoiding initial configurations to Cucker-Smale type flocking models, Commun. Math. Sci., 10 (2012), 625-643.  doi: 10.4310/CMS.2012.v10.n2.a10.  Google Scholar

[2]

S. Ahn and S.-Y. Ha, Stochastic flocking dynamics of the Cucker-Smale model with multiplicative white noises, J. Math. Phys., 51 (2010), 103301, 17pp.  doi: 10.1063/1.3496895.  Google Scholar

[3]

F. BolleyJ. A. Canizo and J. A. Carrillo, Stochastic mean-field limit: Non-Lipschitz forces and swarming, Math. Mod. Meth. Appl. Sci., 21 (2011), 2179-2210.  doi: 10.1142/S0218202511005702.  Google Scholar

[4]

J. A. CanizoJ. A. Carrillo and J. Rosado, A well-posedness theory in measures for some kinetic models of collective motion, Math. Mod., Meth. Appl. Sci., 21 (2011), 515-539.  doi: 10.1142/S0218202511005131.  Google Scholar

[5]

J. A. CarrilloY.-P. Choi and M. Hauray, Local well-posedness of the generalized Cucker-Smale model with singular kernels, ESIAM Proceedings and Surveys, 47 (2014), 17-35.  doi: 10.1051/proc/201447002.  Google Scholar

[6]

J. A. CarrilloM. R. D' Orsogna and V. Panferov, Double milling in self-propelled swarms from kinetic theory, Kinetic Relat. Models, 2 (2009), 363-378.  doi: 10.3934/krm.2009.2.363.  Google Scholar

[7]

J. A. CarrilloM. FornasierJ. Rosado and G. Toscani, Asymptotic flocking dynamics for the kinetic Cucker-Smale model, SIAM J. Math. Anal., 42 (2010), 218-236.  doi: 10.1137/090757290.  Google Scholar

[8]

J. A. CarrilloA. KlarS. Martin and S. Tiwari, Self-propelled interacting particle systems with roosting force, Math. Mod. Meth. Appl. Sci., 20 (2010), 1533-1552.  doi: 10.1142/S0218202510004684.  Google Scholar

[9]

J. ChoS.-Y. HaF. HuangC. Jin and D. Ko, Emergence of bi-cluster flocking for the Cucker-Smale model, Math. Models Methods Appl. Sci., 26 (2016), 1191-1218.  doi: 10.1142/S0218202516500287.  Google Scholar

[10]

J. ChoS.-Y. HaF. HuangC. Jin and D. Ko, Emergence of bi-cluster flocking for agent-based models with unit speed constraint, Anal. Appl., 14 (2016), 39-73.  doi: 10.1142/S0219530515400023.  Google Scholar

[11]

F. Cucker and J.-G. Dong, Avoiding collisions in flocks, IEEE Trans. Autom. Control, 55 (2010), 1238-1243.  doi: 10.1109/TAC.2010.2042355.  Google Scholar

[12]

F. Cucker and F. C. Huepe, Flocking with informed agents, MathS in Action, 1 (2008), 1-25.  doi: 10.5802/msia.1.  Google Scholar

[13]

F. Cucker and E. Mordecki, Flocking in noisy environments, J. Math. Pures Appl., 89 (2008), 278-296.  doi: 10.1016/j.matpur.2007.12.002.  Google Scholar

[14]

F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-862.  doi: 10.1109/TAC.2007.895842.  Google Scholar

[15]

P. Degond and T. Yang, Diffusion in a continuum model of self-propelled particles with alignment interaction, Math. Mod. Meth. Appl. Sci., 20 (2010), 1459-1490.  doi: 10.1142/S0218202510004659.  Google Scholar

[16]

P. Degond and S. Motsch, Macroscopic limit of self-driven particles with orientation interaction, C.R. Math. Acad. Sci. Paris, 345 (2007), 555-560.  doi: 10.1016/j.crma.2007.10.024.  Google Scholar

[17]

P. Degond and S. Motsch, Large-scale dynamics of the Persistent Turing Walker model of fish behavior, J. Stat. Phys., 131 (2008), 989-1021.  doi: 10.1007/s10955-008-9529-8.  Google Scholar

[18]

P. Degond and S. Motsch, Continuum limit of self-driven particles with orientation interaction, Math. Mod. Meth. Appl. Sci., 18 (2008), 1193-1215.  doi: 10.1142/S0218202508003005.  Google Scholar

[19]

R. DuanM. Fornasier and G. Toscani, A kinetic flocking model with diffusion, Commun. Math. Phys., 300 (2010), 95-145.  doi: 10.1007/s00220-010-1110-z.  Google Scholar

[20]

M. FornasierJ. Haskovec and G. Toscani, Fluid dynamic description of flocking via Povzner-Boltzmann equation, Phys. D, 240 (2011), 21-31.  doi: 10.1016/j.physd.2010.08.003.  Google Scholar

[21]

S.-Y. HaT. Ha and J. Kim, Asymptotic flocking dynamics for the Cucker-Smale model with the Rayleigh friction, J. Phys. A: Math. Theor., 43 (2010), 315201, 19pp.  doi: 10.1088/1751-8113/43/31/315201.  Google Scholar

[22]

S.-Y. HaK. Lee and D. Levy, Emergence of time-asymptotic flocking in a stochastic Cucker-Smale system, Commun. Math. Sci., 7 (2009), 453-469.   Google Scholar

[23]

S.-Y. Ha and J.-G. Liu, A simple proof of Cucker-Smale flocking dynamics and mean field limit, Commun. Math. Sci., 7 (2009), 297-325.   Google Scholar

[24]

S.-Y. Ha and M. Slemrod, Flocking dynamics of a singularly perturbed oscillator chain and the Cucker-Smale system, J. Dyn. Diff. Equat., 22 (2010), 325-330.  doi: 10.1007/s10884-009-9142-9.  Google Scholar

[25]

S.-Y. Ha and E. Tadmor, From particle to kinetic and hydrodynamic description of flocking, Kinetic Relat. Models, 1 (2008), 415-435.  doi: 10.3934/krm.2008.1.415.  Google Scholar

[26]

Y. Kuramoto, International symposium on mathematical problems in mathematical physics, Lecture Notes Theor. Phys., 39 (1975), 420-422.   Google Scholar

[27]

N. E. LeonardD. A. PaleyF. LekienR. SepulchreD. M. Fratantoni and R. E. Davis, Collective motion, sensor networks and ocean sampling, Proc. IEEE, 95 (2007), 48-74.   Google Scholar

[28]

Z. Li and X. Xue, Cucker-Smale flocking under rooted leadership with fixed and switching topologies, SIAM J. Appl. Math., 70 (2010), 3156-3174.  doi: 10.1137/100791774.  Google Scholar

[29]

S. Motsch and E. Tadmor, A new model for self-organized dynamics and its flocking behavior, J. Stat. Phys., 144 (2011), 923-947.  doi: 10.1007/s10955-011-0285-9.  Google Scholar

[30]

D. A. PaleyN. E. LeonardR. SepulchreD. Grunbaum and J. K. Parrish, Oscillator models and collective motion, IEEE Control Sys., 27 (2007), 89-105.   Google Scholar

[31]

J. ParkH. Kim and S.-Y. Ha, Cucker-Smale flocking with inter-particle bonding forces, IEEE Tran. Automat. Control, 55 (2010), 2617-2623.  doi: 10.1109/TAC.2010.2061070.  Google Scholar

[32]

L. PereaP. Elosegui and G. Gómez, Extension of the Cucker-Smale control law to space flight formation, J. Guidance Control Dynamics, 32 (2009), 526-536.   Google Scholar

[33]

J. Peszek, Existence of piecewise weak solutions of discrete Cucker-Smale flocking model with a singular communication weight, J. Differential Equations, 257 (2014), 2900-2925.  doi: 10.1016/j.jde.2014.06.003.  Google Scholar

[34]

J. Shen, Cucker-Smale flocking under hierarchical leadership, SIAM J. Appl. Math., 68 (2007), 694-719.  doi: 10.1137/060673254.  Google Scholar

[35]

J. Toner and Y. Tu, Flocks, herds, and Schools: A quantitative theory of flocking, Phys. Rev. E, 58 (1998), 4828-4858.  doi: 10.1103/PhysRevE.58.4828.  Google Scholar

[36]

C. M. Topaz and A. L. Bertozzi, Swarming patterns in a two-dimensional kinematic model for biological groups, SIAM J. Appl. Math., 65 (2004), 152-174.  doi: 10.1137/S0036139903437424.  Google Scholar

[37]

T. VicsekA. CzirókE. Ben-JacobI. Cohen and O. Schochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 75 (1995), 1226-1229.  doi: 10.1103/PhysRevLett.75.1226.  Google Scholar

[38]

A. T. Winfree, Biological rhythms and the behavior of populations of coupled oscillators, J. Theor. Biol., 16 (1967), 15-42.   Google Scholar

[1]

Lining Ru, Xiaoping Xue. Flocking of Cucker-Smale model with intrinsic dynamics. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6817-6835. doi: 10.3934/dcdsb.2019168

[2]

Seung-Yeal Ha, Dongnam Ko, Yinglong Zhang. Remarks on the critical coupling strength for the Cucker-Smale model with unit speed. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 2763-2793. doi: 10.3934/dcds.2018116

[3]

Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1

[4]

Chun-Hsien Li, Suh-Yuh Yang. A new discrete Cucker-Smale flocking model under hierarchical leadership. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2587-2599. doi: 10.3934/dcdsb.2016062

[5]

Seung-Yeal Ha, Jinwook Jung, Peter Kuchling. Emergence of anomalous flocking in the fractional Cucker-Smale model. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5465-5489. doi: 10.3934/dcds.2019223

[6]

Hyeong-Ohk Bae, Young-Pil Choi, Seung-Yeal Ha, Moon-Jin Kang. Asymptotic flocking dynamics of Cucker-Smale particles immersed in compressible fluids. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4419-4458. doi: 10.3934/dcds.2014.34.4419

[7]

Chiun-Chuan Chen, Seung-Yeal Ha, Xiongtao Zhang. The global well-posedness of the kinetic Cucker-Smale flocking model with chemotactic movements. Communications on Pure & Applied Analysis, 2018, 17 (2) : 505-538. doi: 10.3934/cpaa.2018028

[8]

Young-Pil Choi, Samir Salem. Cucker-Smale flocking particles with multiplicative noises: Stochastic mean-field limit and phase transition. Kinetic & Related Models, 2019, 12 (3) : 573-592. doi: 10.3934/krm.2019023

[9]

Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic & Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034

[10]

Marco Caponigro, Massimo Fornasier, Benedetto Piccoli, Emmanuel Trélat. Sparse stabilization and optimal control of the Cucker-Smale model. Mathematical Control & Related Fields, 2013, 3 (4) : 447-466. doi: 10.3934/mcrf.2013.3.447

[11]

Young-Pil Choi, Jan Haskovec. Cucker-Smale model with normalized communication weights and time delay. Kinetic & Related Models, 2017, 10 (4) : 1011-1033. doi: 10.3934/krm.2017040

[12]

Ioannis Markou. Collision-avoiding in the singular Cucker-Smale model with nonlinear velocity couplings. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5245-5260. doi: 10.3934/dcds.2018232

[13]

Agnieszka B. Malinowska, Tatiana Odzijewicz. Optimal control of the discrete-time fractional-order Cucker-Smale model. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 347-357. doi: 10.3934/dcdsb.2018023

[14]

Seung-Yeal Ha, Jeongho Kim, Xiongtao Zhang. Uniform stability of the Cucker-Smale model and its application to the Mean-Field limit. Kinetic & Related Models, 2018, 11 (5) : 1157-1181. doi: 10.3934/krm.2018045

[15]

Young-Pil Choi, Seung-Yeal Ha, Jeongho Kim. Propagation of regularity and finite-time collisions for the thermomechanical Cucker-Smale model with a singular communication. Networks & Heterogeneous Media, 2018, 13 (3) : 379-407. doi: 10.3934/nhm.2018017

[16]

Seung-Yeal Ha, Jeongho Kim, Peter Pickl, Xiongtao Zhang. A probabilistic approach for the mean-field limit to the Cucker-Smale model with a singular communication. Kinetic & Related Models, 2019, 12 (5) : 1045-1067. doi: 10.3934/krm.2019039

[17]

Jiu-Gang Dong, Seung-Yeal Ha, Doheon Kim. Interplay of time-delay and velocity alignment in the Cucker-Smale model on a general digraph. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5569-5596. doi: 10.3934/dcdsb.2019072

[18]

Young-Pil Choi, Cristina Pignotti. Emergent behavior of Cucker-Smale model with normalized weights and distributed time delays. Networks & Heterogeneous Media, 2019, 14 (4) : 789-804. doi: 10.3934/nhm.2019032

[19]

Laure Pédèches. Asymptotic properties of various stochastic Cucker-Smale dynamics. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 2731-2762. doi: 10.3934/dcds.2018115

[20]

Le Li, Lihong Huang, Jianhong Wu. Cascade flocking with free-will. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 497-522. doi: 10.3934/dcdsb.2016.21.497

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (15)
  • HTML views (7)
  • Cited by (2)

[Back to Top]