September  2017, 10(3): 741-784. doi: 10.3934/krm.2017030

Local well-posedness and low Mach number limit of the compressible magnetohydrodynamic equations in critical spaces

1. 

Department of Mathematics, Nanjing University, Nanjing 210093, China

2. 

School of Applied Mathematics, Nanjing University of Finance & Economics, Nanjing 210046, China

3. 

Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, USA

Y. Mu is the corresponding author

Received  July 2016 Revised  October 2016 Published  December 2016

The local well-posedness and low Mach number limit are considered for the multi-dimensional isentropic compressible viscous magnetohydrodynamic equations in critical spaces. First the local well-posedness of solution to the viscous magnetohydrodynamic equations with large initial data is established. Then the low Mach number limit is studied for general large data and it is proved that the solution of the compressible magnetohydrodynamic equations converges to that of the incompressible magnetohydrodynamic equations as the Mach number tends to zero. Moreover, the convergence rates are obtained.

Citation: Fucai Li, Yanmin Mu, Dehua Wang. Local well-posedness and low Mach number limit of the compressible magnetohydrodynamic equations in critical spaces. Kinetic & Related Models, 2017, 10 (3) : 741-784. doi: 10.3934/krm.2017030
References:
[1]

H. Bahouri, J. -Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der Mathematischen Wissenschaften, 343. Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-16830-7.  Google Scholar

[2]

D. Bian and B. Yuan, Well-posedness in super critical Besov spaces for the compressible MHD equations, Int. J. Dyn. Syst. Differ. Equ., 3 (2011), 383-399.  doi: 10.1504/IJDSDE.2011.041882.  Google Scholar

[3]

F. Charve and R. Danchin, A global existence result for the compressible Navier-Stokes equations in the critical $L^p$ framework, Arch. Ration. Mech. Anal., 198 (2010), 233-271.  doi: 10.1007/s00205-010-0306-x.  Google Scholar

[4]

J. -Y. Chemin, Perfect Incompressible Fluids, Translated from the 1995 French original by Isabelle Gallagher and Dragos Iftimie. Oxford Lecture Series in Mathematics and its Applications 14, The Clarendon Press, Oxford University Press, New York, 1998.  Google Scholar

[5]

Q.-L. ChenC.-X. Miao and Z.-F. Zhang, Global well-posedness for compressible navier-stokes equations with highly oscillating initial velocity, Comm. Pure Appl. Math., 63 (2010), 1173-1224.  doi: 10.1002/cpa.20325.  Google Scholar

[6]

R. Danchin, Global existence in critical spaces for compressible navier-stokes equations, Invent. Math., 141 (2000), 579-614.  doi: 10.1007/s002220000078.  Google Scholar

[7]

R. Danchin, Local theory in critical spaces for compressible viscous and heat-conductive gases, Comm. Partial Differential Equations, 26 (2001), 1183-1233.  doi: 10.1081/PDE-100106132.  Google Scholar

[8]

R. Danchin, On the uniqueness in critical spaces for compressible navier-stokes equations, NoDEA Nonlinear Differential Equations Appl., 12 (2005), 111-128.  doi: 10.1007/s00030-004-2032-2.  Google Scholar

[9]

R. Danchin, Well-posedness in critical spaces for barotropic viscous fuids with truly not constant density, Comm. Partial Differential Equations, 32 (2007), 1373-1397.  doi: 10.1080/03605300600910399.  Google Scholar

[10]

R. Danchin, Zero Mach number limit in critial spaces for compressible navier-stokes equations, Ann. Sci. Éc. Norm. Supér.(4), 35 (2002), 27-75.  doi: 10.1016/S0012-9593(01)01085-0.  Google Scholar

[11]

R. Danchin, Zero Mach number limit for compressible flows with periodic boundary conditions, Amer. J. Math., 124 (2002), 1153-1219.  doi: 10.1353/ajm.2002.0036.  Google Scholar

[12]

C.-S. DouS. Jiang and Q.-C. Ju, Global existence and the low Mach number limit for the compressible magnetohydrodynamic equations in a bounded domain with perfectly conducting boundary, Z. Angew. Math. Phys., 64 (2013), 1661-1678.  doi: 10.1007/s00033-013-0311-7.  Google Scholar

[13] E. Feireisl, Dynamics of viscous compressible fluids, Oxford Lecture Series in Mathematics and its Applications, 26, Oxford University Press, Oxford, 2004.   Google Scholar
[14]

E. FeireislA. Novotný and H. Petzeltová, On the existence of globally defined weak solutions to the Navier-Stokes equations, J. Math. Fluid Mech., 3 (2001), 358-392.  doi: 10.1007/PL00000976.  Google Scholar

[15]

E. FeireislA. Novotny and Y. Sun, Dissipative solutions and the incompressible inviscid limits of the compressible magnetohydrodynamic system in unbounded domains, Discrete Contin. Dyn. Syst., 34 (2014), 121-143.  doi: 10.3934/dcds.2014.34.121.  Google Scholar

[16]

C. C. Hao, Well-posedness to the compressible viscous magnetohydrddynamic system, Nonlinear Anal. Real World Appl., 12 (2011), 2962-2972.  doi: 10.1016/j.nonrwa.2011.04.017.  Google Scholar

[17]

B. Haspot, Existence of global strong solutions in critical spaces for barotropic viscous fluids, Arch. Ration. Mech. Anal., 202 (2011), 427-460.  doi: 10.1007/s00205-011-0430-2.  Google Scholar

[18]

X.-P. Hu and D.-H. Wang, Low mach number limit of viscous compressible magnetohydrodynamic flows, SIAM J. Math. Anal., 41 (2009), 1272-1294.  doi: 10.1137/080723983.  Google Scholar

[19]

X.-P. Hu and D.-H. Wang, Global existence and large-time behavior of solutions to the three-dimensional equations of compressible magnetohydrodynamic flows, Arch. Ration. Mech. Anal., 197 (2010), 203-238.  doi: 10.1007/s00205-010-0295-9.  Google Scholar

[20]

S. JiangQ.-C. Ju and F.-C. Li, Incompressible limit of the compressible magnetohydrodynamic equations with vanishing viscosity coefficients, SIAM J. Math. Anal., 42 (2010), 2539-2553.  doi: 10.1137/100785168.  Google Scholar

[21]

S. JiangQ.-C. Ju and F.-C. Li, Incompressible limit of the compressible Magnetohydrodynamic equations with periodic boundary conditions, Comm. Math. Phys., 297 (2010), 371-400.  doi: 10.1007/s00220-010-0992-0.  Google Scholar

[22]

S. Jiang and F.-C. Li, Rigorous derivation of the compressible magnetohydrodynamic equations from the electromagnetic fluid system, Nonlinearity, 25 (2012), 1735-1752.  doi: 10.1088/0951-7715/25/6/1735.  Google Scholar

[23]

A. G. Kulikovskiy and G. A. Lyubimov, Magnetohydrodynamics, Addison-Wesley, Reading, Massachusetts, 1965. Google Scholar

[24]

L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media, Pergamon Press, Oxford-London-New York-Paris; Addison-Wesley Publishing Co., Inc., Reading, Mass. 1960.  Google Scholar

[25]

F.-C. Li and H.-Y. Yu, Optimal decay rate of classical solutions to the compressible magnetohydrodynamic equations, Proc. Roy. Soc. Edinburgh Sect. A, 141 (2011), 109-126.  doi: 10.1017/S0308210509001632.  Google Scholar

[26]

H.-L. LiX.-Y. Xu and J.-W. Zhang, Global classical solutions to 3D compressible magnetohydrodynamic equations with large oscillations and vacuum, SIAM J. Math. Anal., 45 (2013), 1356-1387.  doi: 10.1137/120893355.  Google Scholar

[27]

X.-L. LiN. Su and D.-H. Wang, Local strong solution to the compressible magnetohydrodynamic flow with large data, J. Hyperbolic Differ. Equ., 8 (2011), 415-436.  doi: 10.1142/S0219891611002457.  Google Scholar

[28]

Y. P. Li, Convergence of the compressible magnetohydrodynamic equations to incompressible magnetohydrodynamic equations, J. Differential Equations, 252 (2012), 2725-2738.  doi: 10.1016/j.jde.2011.10.002.  Google Scholar

[29]

P. -L. Lions, Mathematical Topics in Fluid Mechanics, Vol. 2. Compressible Models, Oxford Lecture Series in Mathematics and Its Applications, 10. Oxford Science Publications. Clarendon, Oxford University Press, 1998.  Google Scholar

[30]

S. LiuH. Yu and J.-W. Zhang, Global weak solutions of 3D compressible MHD with discontinuous initial data and vacuum, J. Differential Equations, 254 (2013), 229-255.  doi: 10.1016/j.jde.2012.08.006.  Google Scholar

[31]

Y.-M. Mu, Convergence of the compressible isentropic magnetohydrodynamic equations to the incompressible magnetohydrodynamic equations in critical spaces, Kinet. Relat. Models, 7 (2014), 739-753.  doi: 10.3934/krm.2014.7.739.  Google Scholar

[32]

R. V. Polovin and V. P. Demutskii, Fundamentals Of Magnetohydrodynamics, Consultants, Bureau, New York, 1990. Google Scholar

[33]

A. Suen, A blow-up criterion for the 3D compressible magnetohydrodynamics in terms of density, Discrete Contin. Dyn. Syst., 33 (2013), 3791-3805.  doi: 10.3934/dcds.2013.33.3791.  Google Scholar

[34]

A. Suen and D. Hoff, Global low-energy weak solutions of the equations of three-dimensional compressible magnetohydrodynamics, Arch. Ration. Mech. Anal., 205 (2012), 27-58.  doi: 10.1007/s00205-012-0498-3.  Google Scholar

[35]

H. Triebel, Theory of Function Spaces, Monographs in Mathematics 78. Birkhäuser Verlag, Basel, 1983. doi: 10.1007/978-3-0346-0416-1.  Google Scholar

[36]

X. Xu and J. Zhang, A blow-up criterion for 3D compressible magnetohydrodynamic equations with vacuum, Math. Models Methods Appl. Sci., 22 (2012), 1150010, 23 pp.  doi: 10.1142/S0218202511500102.  Google Scholar

show all references

References:
[1]

H. Bahouri, J. -Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der Mathematischen Wissenschaften, 343. Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-16830-7.  Google Scholar

[2]

D. Bian and B. Yuan, Well-posedness in super critical Besov spaces for the compressible MHD equations, Int. J. Dyn. Syst. Differ. Equ., 3 (2011), 383-399.  doi: 10.1504/IJDSDE.2011.041882.  Google Scholar

[3]

F. Charve and R. Danchin, A global existence result for the compressible Navier-Stokes equations in the critical $L^p$ framework, Arch. Ration. Mech. Anal., 198 (2010), 233-271.  doi: 10.1007/s00205-010-0306-x.  Google Scholar

[4]

J. -Y. Chemin, Perfect Incompressible Fluids, Translated from the 1995 French original by Isabelle Gallagher and Dragos Iftimie. Oxford Lecture Series in Mathematics and its Applications 14, The Clarendon Press, Oxford University Press, New York, 1998.  Google Scholar

[5]

Q.-L. ChenC.-X. Miao and Z.-F. Zhang, Global well-posedness for compressible navier-stokes equations with highly oscillating initial velocity, Comm. Pure Appl. Math., 63 (2010), 1173-1224.  doi: 10.1002/cpa.20325.  Google Scholar

[6]

R. Danchin, Global existence in critical spaces for compressible navier-stokes equations, Invent. Math., 141 (2000), 579-614.  doi: 10.1007/s002220000078.  Google Scholar

[7]

R. Danchin, Local theory in critical spaces for compressible viscous and heat-conductive gases, Comm. Partial Differential Equations, 26 (2001), 1183-1233.  doi: 10.1081/PDE-100106132.  Google Scholar

[8]

R. Danchin, On the uniqueness in critical spaces for compressible navier-stokes equations, NoDEA Nonlinear Differential Equations Appl., 12 (2005), 111-128.  doi: 10.1007/s00030-004-2032-2.  Google Scholar

[9]

R. Danchin, Well-posedness in critical spaces for barotropic viscous fuids with truly not constant density, Comm. Partial Differential Equations, 32 (2007), 1373-1397.  doi: 10.1080/03605300600910399.  Google Scholar

[10]

R. Danchin, Zero Mach number limit in critial spaces for compressible navier-stokes equations, Ann. Sci. Éc. Norm. Supér.(4), 35 (2002), 27-75.  doi: 10.1016/S0012-9593(01)01085-0.  Google Scholar

[11]

R. Danchin, Zero Mach number limit for compressible flows with periodic boundary conditions, Amer. J. Math., 124 (2002), 1153-1219.  doi: 10.1353/ajm.2002.0036.  Google Scholar

[12]

C.-S. DouS. Jiang and Q.-C. Ju, Global existence and the low Mach number limit for the compressible magnetohydrodynamic equations in a bounded domain with perfectly conducting boundary, Z. Angew. Math. Phys., 64 (2013), 1661-1678.  doi: 10.1007/s00033-013-0311-7.  Google Scholar

[13] E. Feireisl, Dynamics of viscous compressible fluids, Oxford Lecture Series in Mathematics and its Applications, 26, Oxford University Press, Oxford, 2004.   Google Scholar
[14]

E. FeireislA. Novotný and H. Petzeltová, On the existence of globally defined weak solutions to the Navier-Stokes equations, J. Math. Fluid Mech., 3 (2001), 358-392.  doi: 10.1007/PL00000976.  Google Scholar

[15]

E. FeireislA. Novotny and Y. Sun, Dissipative solutions and the incompressible inviscid limits of the compressible magnetohydrodynamic system in unbounded domains, Discrete Contin. Dyn. Syst., 34 (2014), 121-143.  doi: 10.3934/dcds.2014.34.121.  Google Scholar

[16]

C. C. Hao, Well-posedness to the compressible viscous magnetohydrddynamic system, Nonlinear Anal. Real World Appl., 12 (2011), 2962-2972.  doi: 10.1016/j.nonrwa.2011.04.017.  Google Scholar

[17]

B. Haspot, Existence of global strong solutions in critical spaces for barotropic viscous fluids, Arch. Ration. Mech. Anal., 202 (2011), 427-460.  doi: 10.1007/s00205-011-0430-2.  Google Scholar

[18]

X.-P. Hu and D.-H. Wang, Low mach number limit of viscous compressible magnetohydrodynamic flows, SIAM J. Math. Anal., 41 (2009), 1272-1294.  doi: 10.1137/080723983.  Google Scholar

[19]

X.-P. Hu and D.-H. Wang, Global existence and large-time behavior of solutions to the three-dimensional equations of compressible magnetohydrodynamic flows, Arch. Ration. Mech. Anal., 197 (2010), 203-238.  doi: 10.1007/s00205-010-0295-9.  Google Scholar

[20]

S. JiangQ.-C. Ju and F.-C. Li, Incompressible limit of the compressible magnetohydrodynamic equations with vanishing viscosity coefficients, SIAM J. Math. Anal., 42 (2010), 2539-2553.  doi: 10.1137/100785168.  Google Scholar

[21]

S. JiangQ.-C. Ju and F.-C. Li, Incompressible limit of the compressible Magnetohydrodynamic equations with periodic boundary conditions, Comm. Math. Phys., 297 (2010), 371-400.  doi: 10.1007/s00220-010-0992-0.  Google Scholar

[22]

S. Jiang and F.-C. Li, Rigorous derivation of the compressible magnetohydrodynamic equations from the electromagnetic fluid system, Nonlinearity, 25 (2012), 1735-1752.  doi: 10.1088/0951-7715/25/6/1735.  Google Scholar

[23]

A. G. Kulikovskiy and G. A. Lyubimov, Magnetohydrodynamics, Addison-Wesley, Reading, Massachusetts, 1965. Google Scholar

[24]

L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media, Pergamon Press, Oxford-London-New York-Paris; Addison-Wesley Publishing Co., Inc., Reading, Mass. 1960.  Google Scholar

[25]

F.-C. Li and H.-Y. Yu, Optimal decay rate of classical solutions to the compressible magnetohydrodynamic equations, Proc. Roy. Soc. Edinburgh Sect. A, 141 (2011), 109-126.  doi: 10.1017/S0308210509001632.  Google Scholar

[26]

H.-L. LiX.-Y. Xu and J.-W. Zhang, Global classical solutions to 3D compressible magnetohydrodynamic equations with large oscillations and vacuum, SIAM J. Math. Anal., 45 (2013), 1356-1387.  doi: 10.1137/120893355.  Google Scholar

[27]

X.-L. LiN. Su and D.-H. Wang, Local strong solution to the compressible magnetohydrodynamic flow with large data, J. Hyperbolic Differ. Equ., 8 (2011), 415-436.  doi: 10.1142/S0219891611002457.  Google Scholar

[28]

Y. P. Li, Convergence of the compressible magnetohydrodynamic equations to incompressible magnetohydrodynamic equations, J. Differential Equations, 252 (2012), 2725-2738.  doi: 10.1016/j.jde.2011.10.002.  Google Scholar

[29]

P. -L. Lions, Mathematical Topics in Fluid Mechanics, Vol. 2. Compressible Models, Oxford Lecture Series in Mathematics and Its Applications, 10. Oxford Science Publications. Clarendon, Oxford University Press, 1998.  Google Scholar

[30]

S. LiuH. Yu and J.-W. Zhang, Global weak solutions of 3D compressible MHD with discontinuous initial data and vacuum, J. Differential Equations, 254 (2013), 229-255.  doi: 10.1016/j.jde.2012.08.006.  Google Scholar

[31]

Y.-M. Mu, Convergence of the compressible isentropic magnetohydrodynamic equations to the incompressible magnetohydrodynamic equations in critical spaces, Kinet. Relat. Models, 7 (2014), 739-753.  doi: 10.3934/krm.2014.7.739.  Google Scholar

[32]

R. V. Polovin and V. P. Demutskii, Fundamentals Of Magnetohydrodynamics, Consultants, Bureau, New York, 1990. Google Scholar

[33]

A. Suen, A blow-up criterion for the 3D compressible magnetohydrodynamics in terms of density, Discrete Contin. Dyn. Syst., 33 (2013), 3791-3805.  doi: 10.3934/dcds.2013.33.3791.  Google Scholar

[34]

A. Suen and D. Hoff, Global low-energy weak solutions of the equations of three-dimensional compressible magnetohydrodynamics, Arch. Ration. Mech. Anal., 205 (2012), 27-58.  doi: 10.1007/s00205-012-0498-3.  Google Scholar

[35]

H. Triebel, Theory of Function Spaces, Monographs in Mathematics 78. Birkhäuser Verlag, Basel, 1983. doi: 10.1007/978-3-0346-0416-1.  Google Scholar

[36]

X. Xu and J. Zhang, A blow-up criterion for 3D compressible magnetohydrodynamic equations with vacuum, Math. Models Methods Appl. Sci., 22 (2012), 1150010, 23 pp.  doi: 10.1142/S0218202511500102.  Google Scholar

[1]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[2]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[3]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[4]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[5]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[6]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[7]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[8]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[9]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[10]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[11]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[12]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[13]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[14]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[15]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[16]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[17]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[18]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[19]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[20]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (78)
  • HTML views (51)
  • Cited by (3)

Other articles
by authors

[Back to Top]