September  2017, 10(3): 785-797. doi: 10.3934/krm.2017031

Decay property for solutions to plate type equations with variable coefficients

School of Mathematics and Physics, North China Electric Power University, Beijing 102206, China

* Corresponding author: Yongqin Liu

Received  June 2016 Revised  August 2016 Published  December 2016

In this paper we consider the initial value problem of a rotational inertial model for plate type equations with variable coefficients and memory in $\mathbb{R}^n\ (n≥q1)$. We study the decay and the regularity-loss property for this equation in the spirit of [12,15], and characterize the decay and regularity property by a function in the spectral space.

Citation: Shikuan Mao, Yongqin Liu. Decay property for solutions to plate type equations with variable coefficients. Kinetic & Related Models, 2017, 10 (3) : 785-797. doi: 10.3934/krm.2017031
References:
[1]

M. E. Bradley and S. Lenhart, Bilinear spatial control of the velocity term in a Kirchhoff plate equation, Electronic J. Differential Equations, 2001 (2001), 1-15. Google Scholar

[2]

C. Buriol, Energy decay rates for the Timoshenko system of thermoelastic plates, Nonlinear Analysis, 64 (2006), 92-108. doi: 10.1016/j.na.2005.06.010. Google Scholar

[3]

R. C. CharãoE. BisogninV. Bisognin and A. F. Pazoto, Asymptotic behavior for a dissipative plate equation in $\mathbb{R}^N$ with periodic coefficients, Electronic J. Differential Equations, 2008 (2008), 1-23. Google Scholar

[4]

C. R. da Luz and R. C. Charão, Asymptotic properties for a semi-linear plate equation in unbounded domains, J. Hyperbolic Differential Equations, 6 (2009), 269-294. doi: 10.1142/S0219891609001824. Google Scholar

[5]

P. M. N. DharmawardaneJ. E. Muñoz Rivera and S. Kawashima, Decay property for second order hyperbolic systems of viscoelastic materials, J. Math. Anal. Appl., 366 (2010), 621-635. doi: 10.1016/j.jmaa.2009.12.019. Google Scholar

[6]

M. Dimassi and J. Sjöstrand, Spectral Asymptotics in the Semi-Classical Limit, London Mathematical Society Lecture Note Series, 268 Cambridge University Press, 1999. doi: 10.1017/CBO9780511662195. Google Scholar

[7]

Y. Enomoto, On a thermoelastic plate equation in an exterior domain, Math. Meth. Appl. Sci., 25 (2002), 443-472. doi: 10.1002/mma.290. Google Scholar

[8]

L. Hörmander, Analysis of Linear Partial Differential Operators, Vol. Ⅲ, Springer-Verlag, 2007. doi: 10.1007/978-3-540-49938-1. Google Scholar

[9]

T. Hosono and S. Kawashima, Decay property of regularity-loss type and application to some nonlinear hyperbolic-elliptic system, Math. Models Meth. Appl. Sci., 16 (2006), 1839-1859. doi: 10.1142/S021820250600173X. Google Scholar

[10]

K. Ide and S. Kawashima, Decay property of regularity-loss type and nonlinear effects for dissipative Timoshenko system, Math. Models Meth. Appl. Sci., 18 (2008), 1001-1025. doi: 10.1142/S0218202508002930. Google Scholar

[11]

H. J. Lee, Uniform decay for solution of the plate equation with a boundary condition of memory type, Trends in Math, 9 (2006), 51-55. Google Scholar

[12]

Y. Liu, Decay of solutions to an inertial model for a semilinear plate equation with memory, J. Math. Anal. Appl., 394 (2012), 616-632. doi: 10.1016/j.jmaa.2012.04.003. Google Scholar

[13]

Y. Liu and S. Kawashima, Global existence and asymptotic behavior of solutions for quasi-linear dissipative plate equation, Discrete Contin. Dyn. Syst., 29 (2011), 1113-1139. doi: 10.3934/dcds.2011.29.1113. Google Scholar

[14]

Y. Liu and S. Kawashima, Global existence and decay of solutions for a quasi-linear dissipative plate equation, J. Hyperbolic Differential Equations, 8 (2011), 591-614. doi: 10.1142/S0219891611002500. Google Scholar

[15]

Y. Liu and S. Kawashima, Decay property for a plate equation with memory-type dissipation, Kinet. Relat. Mod., 4 (2011), 531--547. doi: 10.3934/krm.2011.4.531. Google Scholar

[16]

S. Mao and Y. Liu, Decay of solutions to generalized plate type equations with memory, Kinet. Relat. Mod., 7 (2014), 121-131. doi: 10.3934/krm.2014.7.121. Google Scholar

[17]

N. Mori and S. Kawashima, Decay property for the Timoshenko system with Fourier's type heat conduction, J. Hyperbolic Differential Equations, 11 (2014), 135-157. doi: 10.1142/S0219891614500039. Google Scholar

[18]

N. Mori and S. Kawashima, Decay property of the Timoshenko-Cattaneo system, Anal. Appl., 14 (2016), 393-413. doi: 10.1142/S0219530515500062. Google Scholar

[19]

N. MoriJ. Xu and S. Kawashima, Global existence and optimal decay rates for the Timoshenko system: The case of equal wave speeds, J. Differ. Equations., 258 (2015), 1494-1518. doi: 10.1016/j.jde.2014.11.003. Google Scholar

[20]

J. E. Muñoz RiveraM. G. Naso and F. M. Vegni, Asymptotic behavior of the energy for a class of weakly dissipative second-order systems with memory, J. Math. Anal. Appl., 286 (2003), 692-704. doi: 10.1016/S0022-247X(03)00511-0. Google Scholar

[21] M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. Ⅰ, Academic Press, New York, 1980. Google Scholar
[22]

Y. Sugitani and S. Kawashima, Decay estimates of solutions to a semi-linear dissipative plate equation, J. Hyperbolic Differential Equations, 7 (2010), 471-501. doi: 10.1142/S0219891610002207. Google Scholar

[23]

J. XuN. Mori and S. Kawashima, Global existence and minimal decay regularity for the Timoshenko system: The case of non-equal wave speeds, J. Differ. Equations., 259 (2015), 5533-5553. doi: 10.1016/j.jde.2015.06.041. Google Scholar

show all references

References:
[1]

M. E. Bradley and S. Lenhart, Bilinear spatial control of the velocity term in a Kirchhoff plate equation, Electronic J. Differential Equations, 2001 (2001), 1-15. Google Scholar

[2]

C. Buriol, Energy decay rates for the Timoshenko system of thermoelastic plates, Nonlinear Analysis, 64 (2006), 92-108. doi: 10.1016/j.na.2005.06.010. Google Scholar

[3]

R. C. CharãoE. BisogninV. Bisognin and A. F. Pazoto, Asymptotic behavior for a dissipative plate equation in $\mathbb{R}^N$ with periodic coefficients, Electronic J. Differential Equations, 2008 (2008), 1-23. Google Scholar

[4]

C. R. da Luz and R. C. Charão, Asymptotic properties for a semi-linear plate equation in unbounded domains, J. Hyperbolic Differential Equations, 6 (2009), 269-294. doi: 10.1142/S0219891609001824. Google Scholar

[5]

P. M. N. DharmawardaneJ. E. Muñoz Rivera and S. Kawashima, Decay property for second order hyperbolic systems of viscoelastic materials, J. Math. Anal. Appl., 366 (2010), 621-635. doi: 10.1016/j.jmaa.2009.12.019. Google Scholar

[6]

M. Dimassi and J. Sjöstrand, Spectral Asymptotics in the Semi-Classical Limit, London Mathematical Society Lecture Note Series, 268 Cambridge University Press, 1999. doi: 10.1017/CBO9780511662195. Google Scholar

[7]

Y. Enomoto, On a thermoelastic plate equation in an exterior domain, Math. Meth. Appl. Sci., 25 (2002), 443-472. doi: 10.1002/mma.290. Google Scholar

[8]

L. Hörmander, Analysis of Linear Partial Differential Operators, Vol. Ⅲ, Springer-Verlag, 2007. doi: 10.1007/978-3-540-49938-1. Google Scholar

[9]

T. Hosono and S. Kawashima, Decay property of regularity-loss type and application to some nonlinear hyperbolic-elliptic system, Math. Models Meth. Appl. Sci., 16 (2006), 1839-1859. doi: 10.1142/S021820250600173X. Google Scholar

[10]

K. Ide and S. Kawashima, Decay property of regularity-loss type and nonlinear effects for dissipative Timoshenko system, Math. Models Meth. Appl. Sci., 18 (2008), 1001-1025. doi: 10.1142/S0218202508002930. Google Scholar

[11]

H. J. Lee, Uniform decay for solution of the plate equation with a boundary condition of memory type, Trends in Math, 9 (2006), 51-55. Google Scholar

[12]

Y. Liu, Decay of solutions to an inertial model for a semilinear plate equation with memory, J. Math. Anal. Appl., 394 (2012), 616-632. doi: 10.1016/j.jmaa.2012.04.003. Google Scholar

[13]

Y. Liu and S. Kawashima, Global existence and asymptotic behavior of solutions for quasi-linear dissipative plate equation, Discrete Contin. Dyn. Syst., 29 (2011), 1113-1139. doi: 10.3934/dcds.2011.29.1113. Google Scholar

[14]

Y. Liu and S. Kawashima, Global existence and decay of solutions for a quasi-linear dissipative plate equation, J. Hyperbolic Differential Equations, 8 (2011), 591-614. doi: 10.1142/S0219891611002500. Google Scholar

[15]

Y. Liu and S. Kawashima, Decay property for a plate equation with memory-type dissipation, Kinet. Relat. Mod., 4 (2011), 531--547. doi: 10.3934/krm.2011.4.531. Google Scholar

[16]

S. Mao and Y. Liu, Decay of solutions to generalized plate type equations with memory, Kinet. Relat. Mod., 7 (2014), 121-131. doi: 10.3934/krm.2014.7.121. Google Scholar

[17]

N. Mori and S. Kawashima, Decay property for the Timoshenko system with Fourier's type heat conduction, J. Hyperbolic Differential Equations, 11 (2014), 135-157. doi: 10.1142/S0219891614500039. Google Scholar

[18]

N. Mori and S. Kawashima, Decay property of the Timoshenko-Cattaneo system, Anal. Appl., 14 (2016), 393-413. doi: 10.1142/S0219530515500062. Google Scholar

[19]

N. MoriJ. Xu and S. Kawashima, Global existence and optimal decay rates for the Timoshenko system: The case of equal wave speeds, J. Differ. Equations., 258 (2015), 1494-1518. doi: 10.1016/j.jde.2014.11.003. Google Scholar

[20]

J. E. Muñoz RiveraM. G. Naso and F. M. Vegni, Asymptotic behavior of the energy for a class of weakly dissipative second-order systems with memory, J. Math. Anal. Appl., 286 (2003), 692-704. doi: 10.1016/S0022-247X(03)00511-0. Google Scholar

[21] M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. Ⅰ, Academic Press, New York, 1980. Google Scholar
[22]

Y. Sugitani and S. Kawashima, Decay estimates of solutions to a semi-linear dissipative plate equation, J. Hyperbolic Differential Equations, 7 (2010), 471-501. doi: 10.1142/S0219891610002207. Google Scholar

[23]

J. XuN. Mori and S. Kawashima, Global existence and minimal decay regularity for the Timoshenko system: The case of non-equal wave speeds, J. Differ. Equations., 259 (2015), 5533-5553. doi: 10.1016/j.jde.2015.06.041. Google Scholar

[1]

Priyanjana M. N. Dharmawardane. Decay property of regularity-loss type for quasi-linear hyperbolic systems of viscoelasticity. Conference Publications, 2013, 2013 (special) : 197-206. doi: 10.3934/proc.2013.2013.197

[2]

Yongqin Liu, Shuichi Kawashima. Decay property for a plate equation with memory-type dissipation. Kinetic & Related Models, 2011, 4 (2) : 531-547. doi: 10.3934/krm.2011.4.531

[3]

Shikuan Mao, Yongqin Liu. Decay of solutions to generalized plate type equations with memory. Kinetic & Related Models, 2014, 7 (1) : 121-131. doi: 10.3934/krm.2014.7.121

[4]

Hideo Kubo. On the pointwise decay estimate for the wave equation with compactly supported forcing term. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1469-1480. doi: 10.3934/cpaa.2015.14.1469

[5]

Hongjie Dong, Dapeng Du. Global well-posedness and a decay estimate for the critical dissipative quasi-geostrophic equation in the whole space. Discrete & Continuous Dynamical Systems - A, 2008, 21 (4) : 1095-1101. doi: 10.3934/dcds.2008.21.1095

[6]

Yongqin Liu. Asymptotic behavior of solutions to a nonlinear plate equation with memory. Communications on Pure & Applied Analysis, 2017, 16 (2) : 533-556. doi: 10.3934/cpaa.2017027

[7]

Roberto Triggiani, Jing Zhang. Heat-viscoelastic plate interaction: Analyticity, spectral analysis, exponential decay. Evolution Equations & Control Theory, 2018, 7 (1) : 153-182. doi: 10.3934/eect.2018008

[8]

Mohammad M. Al-Gharabli, Aissa Guesmia, Salim A. Messaoudi. Existence and a general decay results for a viscoelastic plate equation with a logarithmic nonlinearity. Communications on Pure & Applied Analysis, 2019, 18 (1) : 159-180. doi: 10.3934/cpaa.2019009

[9]

Li-Ming Yeh. Pointwise estimate for elliptic equations in periodic perforated domains. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1961-1986. doi: 10.3934/cpaa.2015.14.1961

[10]

Anushaya Mohapatra, William Ott. Memory loss for nonequilibrium open dynamical systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3747-3759. doi: 10.3934/dcds.2014.34.3747

[11]

Miao Liu, Weike Wang. Global existence and pointwise estimates of solutions for the multidimensional generalized Boussinesq-type equation. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1203-1222. doi: 10.3934/cpaa.2014.13.1203

[12]

Muhammad I. Mustafa. On the control of the wave equation by memory-type boundary condition. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1179-1192. doi: 10.3934/dcds.2015.35.1179

[13]

Jun Zhou. Global existence and energy decay estimate of solutions for a class of nonlinear higher-order wave equation with general nonlinear dissipation and source term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1175-1185. doi: 10.3934/dcdss.2017064

[14]

Romain Aimino, Huyi Hu, Matthew Nicol, Andrei Török, Sandro Vaienti. Polynomial loss of memory for maps of the interval with a neutral fixed point. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 793-806. doi: 10.3934/dcds.2015.35.793

[15]

Gary Lieberman. A new regularity estimate for solutions of singular parabolic equations. Conference Publications, 2005, 2005 (Special) : 605-610. doi: 10.3934/proc.2005.2005.605

[16]

Zongming Guo, Juncheng Wei. Liouville type results and regularity of the extremal solutions of biharmonic equation with negative exponents. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : 2561-2580. doi: 10.3934/dcds.2014.34.2561

[17]

Kimitoshi Tsutaya. Scattering theory for the wave equation of a Hartree type in three space dimensions. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2261-2281. doi: 10.3934/dcds.2014.34.2261

[18]

John Sylvester. An estimate for the free Helmholtz equation that scales. Inverse Problems & Imaging, 2009, 3 (2) : 333-351. doi: 10.3934/ipi.2009.3.333

[19]

Robert M. Strain. Optimal time decay of the non cut-off Boltzmann equation in the whole space. Kinetic & Related Models, 2012, 5 (3) : 583-613. doi: 10.3934/krm.2012.5.583

[20]

Moncef Aouadi, Alain Miranville. Quasi-stability and global attractor in nonlinear thermoelastic diffusion plate with memory. Evolution Equations & Control Theory, 2015, 4 (3) : 241-263. doi: 10.3934/eect.2015.4.241

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (8)
  • HTML views (1)
  • Cited by (0)

Other articles
by authors

[Back to Top]