We consider a linear runs and tumbles equation in dimension $d ≥ 1$ for which we establish the existence of a unique positive and normalized steady state as well as its asymptotic stability, improving similar results obtained by Calvez et al. [
Citation: |
W. Alt
, Biased random walk models for chemotaxis and related diffusion approximations, J. Math. Biol., 9 (1980)
, 147-177.
doi: 10.1007/BF00275919.![]() ![]() ![]() |
|
W. Arendt
, Kato's inequality: A characterisation of generators of positive semigroups, Proc. Roy. Irish Acad. Sect. A, 84 (1984)
, 155-174.
![]() ![]() |
|
J. M. Ball
, Strongly continuous semigroups, weak solutions, and the variation of constants formula, Proc. Amer. Math. Soc., 63 (1977)
, 370-373.
![]() ![]() |
|
C. Bardos and P. Degond, Global existence for the Vlasov-Poisson equation in 3 space variables with small initial data, Ann. Inst. H. Poincaré Anal. Non Linéaire 2, 2 (1985), 101–118.
![]() ![]() |
|
F. Bouchut
and L. Desvillettes
, Averaging lemmas without time Fourier transform and application to discretized kinetic equations, Proc. Roy. Soc. Edinburgh Sect. A, 129 (1999)
, 19-36.
doi: 10.1017/S030821050002744X.![]() ![]() ![]() |
|
N. Bournaveas
and V. Calvez
, A review of recent existence and blow-up results for kinetic models of chemotaxis, Can. Appl. Math. Q., 18 (2010)
, 253-265.
![]() ![]() |
|
V. Calvez, Chemotactic waves of bacteria at the mesoscale, preprint, arXiv: 1607.00429.
![]() |
|
V. Calvez
, G. Raoul
and C. Schmeiser
, Confinement by biased velocity jumps: Aggregation of Escherichia coli, Kinet. Relat. Models, 8 (2015)
, 651-666.
doi: 10.3934/krm.2015.8.651.![]() ![]() ![]() |
|
L. Desvillettes
and S. Mischler
, About the splitting algorithm for Boltzmann and BGK equations, Math. Models Methods Appl. Sci., 6 (1996)
, 1079-1101.
doi: 10.1142/S0218202596000444.![]() ![]() ![]() |
|
R. J. DiPerna
and P.-L. Lions
, Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., 98 (1989)
, 511-547.
doi: 10.1007/BF01393835.![]() ![]() ![]() |
|
J. Dolbeault
, C. Mouhot
and C. Schmeiser
, Hypocoercivity for linear kinetic equations conserving mass, Trans. Amer. Math. Soc., 367 (2015)
, 3807-3828.
doi: 10.1090/S0002-9947-2015-06012-7.![]() ![]() ![]() |
|
R. Erban and H. G. Othmer, From individual to collective behavior in bacterial chemotaxis, SIAM J. Appl. Math. , 65 (2004/05), 361–391 (electronic).
doi: 10.1137/S0036139903433232.![]() ![]() ![]() |
|
M. Escobedo
, S. Mischler
and M. Rodriguez Ricard
, On self-similarity and stationary problem for fragmentation and coagulation models, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005)
, 99-125.
doi: 10.1016/j.anihpc.2004.06.001.![]() ![]() ![]() |
|
F. Golse
, P.-L. Lions
, B. Perthame
and R. Sentis
, Regularity of the moments of the solution of a transport equation, J. Funct. Anal., 76 (1988)
, 110-125.
doi: 10.1016/0022-1236(88)90051-1.![]() ![]() ![]() |
|
F. Golse
, B. Perthame
and R. Sentis
, Un résultat de compacité pour les équations de transport et application au calcul de la limite de la valeur propre principale d'un opérateur de transport, C. R. Acad. Sci. Paris Sér. I Math., 301 (1985)
, 341-344.
![]() ![]() |
|
M. Gualdani, S. Mischler and C. Mouhot, Factorization for Non-Symmetric Operators and Exponential H-theorem, preprint, arXiv: 1006.5523.
![]() |
|
F. James
and N. Vauchelet
, Chemotaxis: From kinetic equations to aggregate dynamics, NoDEA Nonlinear Differential Equations Appl., 20 (2013)
, 101-127.
doi: 10.1007/s00030-012-0155-4.![]() ![]() ![]() |
|
P.-L. Lions
and B. Perthame
, Lemmes de moments, de moyenne et de dispersion, C. R. Acad. Sci. Paris Sér. I Math., 314 (1992)
, 801-806.
![]() ![]() |
|
S. Mischler, Erratum: Spectral analysis of semigroups and growth-fragmentation equations, Submitted.
![]() |
|
S. Mischler, Semigroups in Banach Spaces -Factorization Approach for Spectral Analysis and Asymptotic Estimates, in preparation.
![]() |
|
S. Mischler
and C. Mouhot
, Exponential stability of slowly decaying solutions to the kinetic-Fokker-Planck equation, Arch. Ration. Mech. Anal., 221 (2016)
, 677-723.
doi: 10.1007/s00205-016-0972-4.![]() ![]() ![]() |
|
S. Mischler
, C. Quiñinao
and J. Touboul
, On a kinetic fitzhugh-nagumo model of neuronal network, Comm. Math. Phys., 342 (2016)
, 1001-1042.
doi: 10.1007/s00220-015-2556-9.![]() ![]() ![]() |
|
S. Mischler
and J. Scher
, Spectral analysis of semigroups and growth-fragmentation equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016)
, 849-898.
doi: 10.1016/j.anihpc.2015.01.007.![]() ![]() ![]() |
|
H. G. Othmer
, S. R. Dunbar
and W. Alt
, Models of dispersal in biological systems, J. Math. Biol., 26 (1988)
, 263-298.
doi: 10.1007/BF00277392.![]() ![]() ![]() |
|
H. G. Othmer
and A. Stevens
, Aggregation, blowup, and collapse: The ABC's of taxis in reinforced random walks, SIAM J. Appl. Math., 57 (1997)
, 1044-1081.
doi: 10.1137/S0036139995288976.![]() ![]() ![]() |
|
B. Perthame
, Global existence to the BGK model of Boltzmann equation, J. Differential Equations, 82 (1989)
, 191-205.
doi: 10.1016/0022-0396(89)90173-3.![]() ![]() ![]() |
|
B. Perthame
, Time decay, propagation of low moments and dispersive effects for kinetic equations, Comm. Partial Differential Equations, 21 (1996)
, 659-686.
doi: 10.1080/03605309608821201.![]() ![]() ![]() |
|
A. R. Schep
, Weak Kato-inequalities and positive semigroups, Math. Z., 190 (1985)
, 305-314.
doi: 10.1007/BF01215132.![]() ![]() ![]() |
|
D. W. Stroock
, Some stochastic processes which arise from a model of the motion of a bacterium, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 28 (1973/74)
, 303-315.
![]() |
|
C. Villani
, Hypocoercivity, Mem. Amer. Math. Soc., 202 (2009)
, ⅳ+141.
doi: 10.1090/S0065-9266-09-00567-5.![]() ![]() ![]() |