• Previous Article
    The two dimensional Vlasov-Poisson system with steady spatial asymptotics
  • KRM Home
  • This Issue
  • Next Article
    Boundary layers for discrete kinetic models: Multicomponent mixtures, polyatomic molecules, bimolecular reactions, and quantum kinetic equations
December  2017, 10(4): 957-976. doi: 10.3934/krm.2017038

Grossly determined solutions for a Boltzmann-like equation

Department of Mathematics, Bradley University, Bradley Hall 445, Peoria, IL 61625, USA

Received  October 2015 Revised  December 2016 Published  March 2017

Fund Project: The author is supported by NSF grant DMS 08-38434 "EMSW21-MCTP: Research Experience for Graduate Students" and from the Caterpillar Fellowship Grant at Bradley University.

In gas dynamics, the connection between the continuum physics model offered by the Navier-Stokes equations and the heat equation and the molecular model offered by the kinetic theory of gases has been understood for some time, especially through the work of Chapman and Enskog, but it has never been established rigorously. This paper established a precise bridge between these two models for a simple linear Boltzman-like equation. Specifically a special class of solutions, the grossly determined solutions, of this kinetic model are shown to exist and satisfy closed form balance equations representing a class of continuum model solutions.

Citation: Thomas Carty. Grossly determined solutions for a Boltzmann-like equation. Kinetic & Related Models, 2017, 10 (4) : 957-976. doi: 10.3934/krm.2017038
References:
[1]

R. Alonso, Boltzmann-type Equations and Their Applications Publicações Matemáticas do IMPA. [IMPA Mathematical Publications], Instituto Nacional de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 2015.  Google Scholar

[2]

R. Alonso and W. Sun, The radiative transfer equation in the forward-peaked regime, Comm. Math. Phys., 338 (2015), 1233-1286.  doi: 10.1007/s00220-015-2395-8.  Google Scholar

[3]

R. J. Alonso and I. M. Gamba, Distributional and classical solutions to the Cauchy Boltzmann problem for soft potentials with integrable angular cross section, J. Stat. Phys., 137 (2009), 1147-1165.  doi: 10.1007/s10955-009-9873-3.  Google Scholar

[4]

L. Arkeryd, Stability in L1 for the spatially homogeneous Boltzmann equation, Archive for Rational Mechanics and Analysis, 103 (1988), 151-167.  doi: 10.1007/BF00251506.  Google Scholar

[5]

T. E. Carty, Elementary Solutions for a model Boltzmann Equation in one-dimension and the connection to Grossly Determined Solutions, preprint, arXiv: 1608.03510. Google Scholar

[6]

K. M. Case, Elementary solutions of the transport equation and their applications, Annals of Physics, 9 (1960), 1-23.  doi: 10.1016/0003-4916(60)90060-9.  Google Scholar

[7]

C. Cercignani, Methods of solution of the linearized Boltzmann equation for rarefied gas dynamics, Journal of Quantitative Spectroscopy and Radiative Transfer, 11 (1971), 973-985.  doi: 10.1016/0022-4073(71)90068-9.  Google Scholar

[8]

C. Cercignani, H-theorem and trend to equilibrium in the kinetic theory of gases, Arch. Mech. (Arch. Mech. Stos.), 34 (1982), 231-241.   Google Scholar

[9]

C. Cercignani, Elementary solutions of the linearized gas-dynamics Boltzmann equation and their application to the slip-flow problem, Annals of Physics, 20 (1962), 219-233.  doi: 10.1016/0003-4916(62)90199-9.  Google Scholar

[10]

C. Cercignani, R. Illner and M. Pulvierenti, The Mathematical Theory of Dilute Gases Applied Mathematical Sciences, 106, Springer-Verlag, New York, 1994. doi: 10.1007/978-1-4419-8524-8.  Google Scholar

[11]

C. Cercignani and F. Sernagiotto, The method of elementary solutions for time-dependent problems in linearized kinetic theory, Annals of Physics, 30 (1964), 154-167.  doi: 10.1016/0003-4916(64)90308-2.  Google Scholar

[12]

L. Desvillettes and C. Villani, On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation, Invent. Math., 159 (2005), 245-316.  doi: 10.1007/s00222-004-0389-9.  Google Scholar

[13]

L. Desvillettes and C. Mouhot, Large time behavior of the a priori bounds for the solutions to the spatially homogeneous Boltzmann equations with soft potentials, Asymptot. Anal., 54 (2007), 235-245.   Google Scholar

[14]

R. J. DiPerna and P.-L. Lions, On the Cauchy problem for Boltzmann equations: Global existence and weak stability, Ann. of Math., 130 (1989), 321-366.  doi: 10.2307/1971423.  Google Scholar

[15]

E. Dolera, On the computation of the spectrum of the linearized Boltzmann collision operator for Maxwellian molecules, Boll. Unione Mat. Ital.(9), 4 (2011), 47-68.   Google Scholar

[16]

S. Friedlander and D. Serre, Handbook of mathematical fluid dynamics Elsevier, 2002. Google Scholar

[17]

L. S. García-ColínR. M. Velasco and F. J. Uribe, Beyond the Navier-Stokes equations: Burnett hydrodynamics, Phys. Rep., 465 (2008), 149-189.   Google Scholar

[18]

L. Gosse, Well-balanced schemes using elementary solutions for linear models of the Boltzmann equation in one space dimension, Kinetic and Related Models, 5 (2012), 283-323.  doi: 10.3934/krm.2012.5.283.  Google Scholar

[19]

S. Harris, An Introduction to the Theory of the Boltzmann Equation Dover Books on Physics, 2012. Google Scholar

[20]

L. Hörmander, Linear Partial Differential Operators Springer Verlag, Berlin, 1976.  Google Scholar

[21]

S. JinL. Pareschi and M. Slemrod, A relaxation scheme for solving the Boltzmann equation based on the Chapman-Enskog expansion, Acta Math. Appl. Sin. Engl. Ser., 18 (2002), 37-62.  doi: 10.1007/s102550200003.  Google Scholar

[22]

S. Kaniel and M. Shinbrot, The Boltzmann equation. Ⅰ. Uniqueness and local existence, Comm. Math. Phys., 58 (1978), 65-84.   Google Scholar

[23]

S. Mischler and B. Wennberg, On the spatially homogeneous Boltzmann equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 16 (1999), 467-501.  doi: 10.1016/S0294-1449(99)80025-0.  Google Scholar

[24]

C. Mouhot, Quantitative linearized study of the Boltzmann collision operator and applications, Commun. Math. Sci., 1 (2007), 73-86.  doi: 10.4310/CMS.2007.v5.n5.a6.  Google Scholar

[25]

M. Slemrod, Constitutive relations for monatomic gases based on a generalized rational approximation to the sum of the Chapman-Enskog expansion, Arch. Ration. Mech. Anal., 150 (1999), 1-22.  doi: 10.1007/s002050050178.  Google Scholar

[26]

C. Truesdell and R. G. Muncaster, Fundamentals Of Maxwell's Kinetic Theory Of A Simple Monatomic Gas Treated as a branch of rational mechanics, Pure and Applied Mathematics, Vol. 83, Academic Press, 1980.  Google Scholar

[27]

C. Villani, Cercignani's conjecture is sometimes true and always almost true, Comm. Math. Phys., 234 (2003), 455-490.  doi: 10.1007/s00220-002-0777-1.  Google Scholar

show all references

References:
[1]

R. Alonso, Boltzmann-type Equations and Their Applications Publicações Matemáticas do IMPA. [IMPA Mathematical Publications], Instituto Nacional de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 2015.  Google Scholar

[2]

R. Alonso and W. Sun, The radiative transfer equation in the forward-peaked regime, Comm. Math. Phys., 338 (2015), 1233-1286.  doi: 10.1007/s00220-015-2395-8.  Google Scholar

[3]

R. J. Alonso and I. M. Gamba, Distributional and classical solutions to the Cauchy Boltzmann problem for soft potentials with integrable angular cross section, J. Stat. Phys., 137 (2009), 1147-1165.  doi: 10.1007/s10955-009-9873-3.  Google Scholar

[4]

L. Arkeryd, Stability in L1 for the spatially homogeneous Boltzmann equation, Archive for Rational Mechanics and Analysis, 103 (1988), 151-167.  doi: 10.1007/BF00251506.  Google Scholar

[5]

T. E. Carty, Elementary Solutions for a model Boltzmann Equation in one-dimension and the connection to Grossly Determined Solutions, preprint, arXiv: 1608.03510. Google Scholar

[6]

K. M. Case, Elementary solutions of the transport equation and their applications, Annals of Physics, 9 (1960), 1-23.  doi: 10.1016/0003-4916(60)90060-9.  Google Scholar

[7]

C. Cercignani, Methods of solution of the linearized Boltzmann equation for rarefied gas dynamics, Journal of Quantitative Spectroscopy and Radiative Transfer, 11 (1971), 973-985.  doi: 10.1016/0022-4073(71)90068-9.  Google Scholar

[8]

C. Cercignani, H-theorem and trend to equilibrium in the kinetic theory of gases, Arch. Mech. (Arch. Mech. Stos.), 34 (1982), 231-241.   Google Scholar

[9]

C. Cercignani, Elementary solutions of the linearized gas-dynamics Boltzmann equation and their application to the slip-flow problem, Annals of Physics, 20 (1962), 219-233.  doi: 10.1016/0003-4916(62)90199-9.  Google Scholar

[10]

C. Cercignani, R. Illner and M. Pulvierenti, The Mathematical Theory of Dilute Gases Applied Mathematical Sciences, 106, Springer-Verlag, New York, 1994. doi: 10.1007/978-1-4419-8524-8.  Google Scholar

[11]

C. Cercignani and F. Sernagiotto, The method of elementary solutions for time-dependent problems in linearized kinetic theory, Annals of Physics, 30 (1964), 154-167.  doi: 10.1016/0003-4916(64)90308-2.  Google Scholar

[12]

L. Desvillettes and C. Villani, On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation, Invent. Math., 159 (2005), 245-316.  doi: 10.1007/s00222-004-0389-9.  Google Scholar

[13]

L. Desvillettes and C. Mouhot, Large time behavior of the a priori bounds for the solutions to the spatially homogeneous Boltzmann equations with soft potentials, Asymptot. Anal., 54 (2007), 235-245.   Google Scholar

[14]

R. J. DiPerna and P.-L. Lions, On the Cauchy problem for Boltzmann equations: Global existence and weak stability, Ann. of Math., 130 (1989), 321-366.  doi: 10.2307/1971423.  Google Scholar

[15]

E. Dolera, On the computation of the spectrum of the linearized Boltzmann collision operator for Maxwellian molecules, Boll. Unione Mat. Ital.(9), 4 (2011), 47-68.   Google Scholar

[16]

S. Friedlander and D. Serre, Handbook of mathematical fluid dynamics Elsevier, 2002. Google Scholar

[17]

L. S. García-ColínR. M. Velasco and F. J. Uribe, Beyond the Navier-Stokes equations: Burnett hydrodynamics, Phys. Rep., 465 (2008), 149-189.   Google Scholar

[18]

L. Gosse, Well-balanced schemes using elementary solutions for linear models of the Boltzmann equation in one space dimension, Kinetic and Related Models, 5 (2012), 283-323.  doi: 10.3934/krm.2012.5.283.  Google Scholar

[19]

S. Harris, An Introduction to the Theory of the Boltzmann Equation Dover Books on Physics, 2012. Google Scholar

[20]

L. Hörmander, Linear Partial Differential Operators Springer Verlag, Berlin, 1976.  Google Scholar

[21]

S. JinL. Pareschi and M. Slemrod, A relaxation scheme for solving the Boltzmann equation based on the Chapman-Enskog expansion, Acta Math. Appl. Sin. Engl. Ser., 18 (2002), 37-62.  doi: 10.1007/s102550200003.  Google Scholar

[22]

S. Kaniel and M. Shinbrot, The Boltzmann equation. Ⅰ. Uniqueness and local existence, Comm. Math. Phys., 58 (1978), 65-84.   Google Scholar

[23]

S. Mischler and B. Wennberg, On the spatially homogeneous Boltzmann equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 16 (1999), 467-501.  doi: 10.1016/S0294-1449(99)80025-0.  Google Scholar

[24]

C. Mouhot, Quantitative linearized study of the Boltzmann collision operator and applications, Commun. Math. Sci., 1 (2007), 73-86.  doi: 10.4310/CMS.2007.v5.n5.a6.  Google Scholar

[25]

M. Slemrod, Constitutive relations for monatomic gases based on a generalized rational approximation to the sum of the Chapman-Enskog expansion, Arch. Ration. Mech. Anal., 150 (1999), 1-22.  doi: 10.1007/s002050050178.  Google Scholar

[26]

C. Truesdell and R. G. Muncaster, Fundamentals Of Maxwell's Kinetic Theory Of A Simple Monatomic Gas Treated as a branch of rational mechanics, Pure and Applied Mathematics, Vol. 83, Academic Press, 1980.  Google Scholar

[27]

C. Villani, Cercignani's conjecture is sometimes true and always almost true, Comm. Math. Phys., 234 (2003), 455-490.  doi: 10.1007/s00220-002-0777-1.  Google Scholar

Figure 1.  The graph of $ |\boldsymbol{\xi}|=\Xi(c)$
[1]

Tong Yang, Seiji Ukai, Huijiang Zhao. Stationary solutions to the exterior problems for the Boltzmann equation, I. Existence. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 495-520. doi: 10.3934/dcds.2009.23.495

[2]

François Dubois. Third order equivalent equation of lattice Boltzmann scheme. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 221-248. doi: 10.3934/dcds.2009.23.221

[3]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, 2021, 14 (1) : 149-174. doi: 10.3934/krm.2020052

[4]

Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021003

[5]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[6]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[7]

Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020391

[8]

Pavel Eichler, Radek Fučík, Robert Straka. Computational study of immersed boundary - lattice Boltzmann method for fluid-structure interaction. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 819-833. doi: 10.3934/dcdss.2020349

[9]

Yunfeng Jia, Yi Li, Jianhua Wu, Hong-Kun Xu. Cauchy problem of semilinear inhomogeneous elliptic equations of Matukuma-type with multiple growth terms. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3485-3507. doi: 10.3934/dcds.2019227

[10]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[11]

Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229

[12]

Makram Hamouda, Ahmed Bchatnia, Mohamed Ali Ayadi. Numerical solutions for a Timoshenko-type system with thermoelasticity with second sound. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021001

[13]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[14]

Zheng Han, Daoyuan Fang. Almost global existence for the Klein-Gordon equation with the Kirchhoff-type nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020287

[15]

Xiaorui Wang, Genqi Xu, Hao Chen. Uniform stabilization of 1-D Schrödinger equation with internal difference-type control. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021022

[16]

Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266

[17]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021001

[18]

Norman Noguera, Ademir Pastor. Scattering of radial solutions for quadratic-type Schrödinger systems in dimension five. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021018

[19]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[20]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (49)
  • HTML views (114)
  • Cited by (1)

Other articles
by authors

[Back to Top]