
-
Previous Article
The two dimensional Vlasov-Poisson system with steady spatial asymptotics
- KRM Home
- This Issue
-
Next Article
Boundary layers for discrete kinetic models: Multicomponent mixtures, polyatomic molecules, bimolecular reactions, and quantum kinetic equations
Grossly determined solutions for a Boltzmann-like equation
Department of Mathematics, Bradley University, Bradley Hall 445, Peoria, IL 61625, USA |
In gas dynamics, the connection between the continuum physics model offered by the Navier-Stokes equations and the heat equation and the molecular model offered by the kinetic theory of gases has been understood for some time, especially through the work of Chapman and Enskog, but it has never been established rigorously. This paper established a precise bridge between these two models for a simple linear Boltzman-like equation. Specifically a special class of solutions, the grossly determined solutions, of this kinetic model are shown to exist and satisfy closed form balance equations representing a class of continuum model solutions.
References:
[1] |
R. Alonso,
Boltzmann-type Equations and Their Applications Publicações Matemáticas do IMPA. [IMPA Mathematical Publications], Instituto Nacional de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 2015. |
[2] |
R. Alonso and W. Sun,
The radiative transfer equation in the forward-peaked regime, Comm. Math. Phys., 338 (2015), 1233-1286.
doi: 10.1007/s00220-015-2395-8. |
[3] |
R. J. Alonso and I. M. Gamba,
Distributional and classical solutions to the Cauchy Boltzmann problem for soft potentials with integrable angular cross section, J. Stat. Phys., 137 (2009), 1147-1165.
doi: 10.1007/s10955-009-9873-3. |
[4] |
L. Arkeryd,
Stability in L1 for the spatially homogeneous Boltzmann equation, Archive for Rational Mechanics and Analysis, 103 (1988), 151-167.
doi: 10.1007/BF00251506. |
[5] |
T. E. Carty, Elementary Solutions for a model Boltzmann Equation in one-dimension and the connection to Grossly Determined Solutions, preprint, arXiv: 1608.03510. Google Scholar |
[6] |
K. M. Case,
Elementary solutions of the transport equation and their applications, Annals of Physics, 9 (1960), 1-23.
doi: 10.1016/0003-4916(60)90060-9. |
[7] |
C. Cercignani,
Methods of solution of the linearized Boltzmann equation for rarefied gas dynamics, Journal of Quantitative Spectroscopy and Radiative Transfer, 11 (1971), 973-985.
doi: 10.1016/0022-4073(71)90068-9. |
[8] |
C. Cercignani,
H-theorem and trend to equilibrium in the kinetic theory of gases, Arch. Mech. (Arch. Mech. Stos.), 34 (1982), 231-241.
|
[9] |
C. Cercignani,
Elementary solutions of the linearized gas-dynamics Boltzmann equation and their application to the slip-flow problem, Annals of Physics, 20 (1962), 219-233.
doi: 10.1016/0003-4916(62)90199-9. |
[10] |
C. Cercignani, R. Illner and M. Pulvierenti,
The Mathematical Theory of Dilute Gases Applied Mathematical Sciences, 106, Springer-Verlag, New York, 1994.
doi: 10.1007/978-1-4419-8524-8. |
[11] |
C. Cercignani and F. Sernagiotto,
The method of elementary solutions for time-dependent problems in linearized kinetic theory, Annals of Physics, 30 (1964), 154-167.
doi: 10.1016/0003-4916(64)90308-2. |
[12] |
L. Desvillettes and C. Villani,
On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation, Invent. Math., 159 (2005), 245-316.
doi: 10.1007/s00222-004-0389-9. |
[13] |
L. Desvillettes and C. Mouhot,
Large time behavior of the a priori bounds for the solutions to the spatially homogeneous Boltzmann equations with soft potentials, Asymptot. Anal., 54 (2007), 235-245.
|
[14] |
R. J. DiPerna and P.-L. Lions,
On the Cauchy problem for Boltzmann equations: Global existence and weak stability, Ann. of Math., 130 (1989), 321-366.
doi: 10.2307/1971423. |
[15] |
E. Dolera,
On the computation of the spectrum of the linearized Boltzmann collision operator for Maxwellian molecules, Boll. Unione Mat. Ital.(9), 4 (2011), 47-68.
|
[16] |
S. Friedlander and D. Serre, Handbook of mathematical fluid dynamics Elsevier, 2002. Google Scholar |
[17] |
L. S. García-Colín, R. M. Velasco and F. J. Uribe,
Beyond the Navier-Stokes equations: Burnett hydrodynamics, Phys. Rep., 465 (2008), 149-189.
|
[18] |
L. Gosse,
Well-balanced schemes using elementary solutions for linear models of the Boltzmann equation in one space dimension, Kinetic and Related Models, 5 (2012), 283-323.
doi: 10.3934/krm.2012.5.283. |
[19] |
S. Harris, An Introduction to the Theory of the Boltzmann Equation Dover Books on Physics, 2012. Google Scholar |
[20] |
L. Hörmander,
Linear Partial Differential Operators Springer Verlag, Berlin, 1976. |
[21] |
S. Jin, L. Pareschi and M. Slemrod,
A relaxation scheme for solving the Boltzmann equation based on the Chapman-Enskog expansion, Acta Math. Appl. Sin. Engl. Ser., 18 (2002), 37-62.
doi: 10.1007/s102550200003. |
[22] |
S. Kaniel and M. Shinbrot,
The Boltzmann equation. Ⅰ. Uniqueness and local existence, Comm. Math. Phys., 58 (1978), 65-84.
|
[23] |
S. Mischler and B. Wennberg,
On the spatially homogeneous Boltzmann equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 16 (1999), 467-501.
doi: 10.1016/S0294-1449(99)80025-0. |
[24] |
C. Mouhot,
Quantitative linearized study of the Boltzmann collision operator and applications, Commun. Math. Sci., 1 (2007), 73-86.
doi: 10.4310/CMS.2007.v5.n5.a6. |
[25] |
M. Slemrod,
Constitutive relations for monatomic gases based on a generalized rational approximation to the sum of the Chapman-Enskog expansion, Arch. Ration. Mech. Anal., 150 (1999), 1-22.
doi: 10.1007/s002050050178. |
[26] |
C. Truesdell and R. G. Muncaster,
Fundamentals Of Maxwell's Kinetic Theory Of A Simple Monatomic Gas Treated as a branch of rational mechanics, Pure and Applied Mathematics, Vol. 83, Academic Press, 1980. |
[27] |
C. Villani,
Cercignani's conjecture is sometimes true and always almost true, Comm. Math. Phys., 234 (2003), 455-490.
doi: 10.1007/s00220-002-0777-1. |
show all references
References:
[1] |
R. Alonso,
Boltzmann-type Equations and Their Applications Publicações Matemáticas do IMPA. [IMPA Mathematical Publications], Instituto Nacional de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 2015. |
[2] |
R. Alonso and W. Sun,
The radiative transfer equation in the forward-peaked regime, Comm. Math. Phys., 338 (2015), 1233-1286.
doi: 10.1007/s00220-015-2395-8. |
[3] |
R. J. Alonso and I. M. Gamba,
Distributional and classical solutions to the Cauchy Boltzmann problem for soft potentials with integrable angular cross section, J. Stat. Phys., 137 (2009), 1147-1165.
doi: 10.1007/s10955-009-9873-3. |
[4] |
L. Arkeryd,
Stability in L1 for the spatially homogeneous Boltzmann equation, Archive for Rational Mechanics and Analysis, 103 (1988), 151-167.
doi: 10.1007/BF00251506. |
[5] |
T. E. Carty, Elementary Solutions for a model Boltzmann Equation in one-dimension and the connection to Grossly Determined Solutions, preprint, arXiv: 1608.03510. Google Scholar |
[6] |
K. M. Case,
Elementary solutions of the transport equation and their applications, Annals of Physics, 9 (1960), 1-23.
doi: 10.1016/0003-4916(60)90060-9. |
[7] |
C. Cercignani,
Methods of solution of the linearized Boltzmann equation for rarefied gas dynamics, Journal of Quantitative Spectroscopy and Radiative Transfer, 11 (1971), 973-985.
doi: 10.1016/0022-4073(71)90068-9. |
[8] |
C. Cercignani,
H-theorem and trend to equilibrium in the kinetic theory of gases, Arch. Mech. (Arch. Mech. Stos.), 34 (1982), 231-241.
|
[9] |
C. Cercignani,
Elementary solutions of the linearized gas-dynamics Boltzmann equation and their application to the slip-flow problem, Annals of Physics, 20 (1962), 219-233.
doi: 10.1016/0003-4916(62)90199-9. |
[10] |
C. Cercignani, R. Illner and M. Pulvierenti,
The Mathematical Theory of Dilute Gases Applied Mathematical Sciences, 106, Springer-Verlag, New York, 1994.
doi: 10.1007/978-1-4419-8524-8. |
[11] |
C. Cercignani and F. Sernagiotto,
The method of elementary solutions for time-dependent problems in linearized kinetic theory, Annals of Physics, 30 (1964), 154-167.
doi: 10.1016/0003-4916(64)90308-2. |
[12] |
L. Desvillettes and C. Villani,
On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation, Invent. Math., 159 (2005), 245-316.
doi: 10.1007/s00222-004-0389-9. |
[13] |
L. Desvillettes and C. Mouhot,
Large time behavior of the a priori bounds for the solutions to the spatially homogeneous Boltzmann equations with soft potentials, Asymptot. Anal., 54 (2007), 235-245.
|
[14] |
R. J. DiPerna and P.-L. Lions,
On the Cauchy problem for Boltzmann equations: Global existence and weak stability, Ann. of Math., 130 (1989), 321-366.
doi: 10.2307/1971423. |
[15] |
E. Dolera,
On the computation of the spectrum of the linearized Boltzmann collision operator for Maxwellian molecules, Boll. Unione Mat. Ital.(9), 4 (2011), 47-68.
|
[16] |
S. Friedlander and D. Serre, Handbook of mathematical fluid dynamics Elsevier, 2002. Google Scholar |
[17] |
L. S. García-Colín, R. M. Velasco and F. J. Uribe,
Beyond the Navier-Stokes equations: Burnett hydrodynamics, Phys. Rep., 465 (2008), 149-189.
|
[18] |
L. Gosse,
Well-balanced schemes using elementary solutions for linear models of the Boltzmann equation in one space dimension, Kinetic and Related Models, 5 (2012), 283-323.
doi: 10.3934/krm.2012.5.283. |
[19] |
S. Harris, An Introduction to the Theory of the Boltzmann Equation Dover Books on Physics, 2012. Google Scholar |
[20] |
L. Hörmander,
Linear Partial Differential Operators Springer Verlag, Berlin, 1976. |
[21] |
S. Jin, L. Pareschi and M. Slemrod,
A relaxation scheme for solving the Boltzmann equation based on the Chapman-Enskog expansion, Acta Math. Appl. Sin. Engl. Ser., 18 (2002), 37-62.
doi: 10.1007/s102550200003. |
[22] |
S. Kaniel and M. Shinbrot,
The Boltzmann equation. Ⅰ. Uniqueness and local existence, Comm. Math. Phys., 58 (1978), 65-84.
|
[23] |
S. Mischler and B. Wennberg,
On the spatially homogeneous Boltzmann equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 16 (1999), 467-501.
doi: 10.1016/S0294-1449(99)80025-0. |
[24] |
C. Mouhot,
Quantitative linearized study of the Boltzmann collision operator and applications, Commun. Math. Sci., 1 (2007), 73-86.
doi: 10.4310/CMS.2007.v5.n5.a6. |
[25] |
M. Slemrod,
Constitutive relations for monatomic gases based on a generalized rational approximation to the sum of the Chapman-Enskog expansion, Arch. Ration. Mech. Anal., 150 (1999), 1-22.
doi: 10.1007/s002050050178. |
[26] |
C. Truesdell and R. G. Muncaster,
Fundamentals Of Maxwell's Kinetic Theory Of A Simple Monatomic Gas Treated as a branch of rational mechanics, Pure and Applied Mathematics, Vol. 83, Academic Press, 1980. |
[27] |
C. Villani,
Cercignani's conjecture is sometimes true and always almost true, Comm. Math. Phys., 234 (2003), 455-490.
doi: 10.1007/s00220-002-0777-1. |

[1] |
Tong Yang, Seiji Ukai, Huijiang Zhao. Stationary solutions to the exterior problems for the Boltzmann equation, I. Existence. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 495-520. doi: 10.3934/dcds.2009.23.495 |
[2] |
François Dubois. Third order equivalent equation of lattice Boltzmann scheme. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 221-248. doi: 10.3934/dcds.2009.23.221 |
[3] |
Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, 2021, 14 (1) : 149-174. doi: 10.3934/krm.2020052 |
[4] |
Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021003 |
[5] |
Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259 |
[6] |
Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292 |
[7] |
Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020391 |
[8] |
Pavel Eichler, Radek Fučík, Robert Straka. Computational study of immersed boundary - lattice Boltzmann method for fluid-structure interaction. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 819-833. doi: 10.3934/dcdss.2020349 |
[9] |
Yunfeng Jia, Yi Li, Jianhua Wu, Hong-Kun Xu. Cauchy problem of semilinear inhomogeneous elliptic equations of Matukuma-type with multiple growth terms. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3485-3507. doi: 10.3934/dcds.2019227 |
[10] |
Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020436 |
[11] |
Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229 |
[12] |
Makram Hamouda, Ahmed Bchatnia, Mohamed Ali Ayadi. Numerical solutions for a Timoshenko-type system with thermoelasticity with second sound. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021001 |
[13] |
Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136 |
[14] |
Zheng Han, Daoyuan Fang. Almost global existence for the Klein-Gordon equation with the Kirchhoff-type nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020287 |
[15] |
Xiaorui Wang, Genqi Xu, Hao Chen. Uniform stabilization of 1-D Schrödinger equation with internal difference-type control. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021022 |
[16] |
Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266 |
[17] |
Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021001 |
[18] |
Norman Noguera, Ademir Pastor. Scattering of radial solutions for quadratic-type Schrödinger systems in dimension five. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021018 |
[19] |
Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081 |
[20] |
Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364 |
2019 Impact Factor: 1.311
Tools
Metrics
Other articles
by authors
[Back to Top]