• Previous Article
    Cucker-Smale model with normalized communication weights and time delay
  • KRM Home
  • This Issue
  • Next Article
    The entropy method for reaction-diffusion systems without detailed balance: First order chemical reaction networks
December  2017, 10(4): 1035-1053. doi: 10.3934/krm.2017041

Global strong solutions to the planar compressible magnetohydrodynamic equations with large initial data and vacuum

1. 

Department of Applied Mathematics, Nanjing Forestry University, Nanjing 210037, China

2. 

School of Mathematics, Shandong University, Jinan 250100, China

3. 

Department of Mathematics, Nanjing University, Nanjing 210093, China

* S. Huang is the corresponding author

Received  September 2015 Revised  November 2016 Published  March 2017

This paper considers the initial boundary problem to the planar compressible magnetohydrodynamic equations with large initial data and vacuum. The global existence and uniqueness of large strong solutions are established when the heat conductivity coefficient
$κ(θ)$
satisfies
$C_{1}(1+\theta^q)\leq \kappa(\theta)\leq C_2(1+\theta^q)$
for some constants
$q>0$
, and
$C_1,C_2>0$
.
Citation: Jishan Fan, Shuxiang Huang, Fucai Li. Global strong solutions to the planar compressible magnetohydrodynamic equations with large initial data and vacuum. Kinetic & Related Models, 2017, 10 (4) : 1035-1053. doi: 10.3934/krm.2017041
References:
[1]

A. A. Amosov and A. A. Zlotnik, Global generalized solutions of the equations of the one-dimensional motion of a viscous heat-conducting gas, Sov. Mat. Dokl., 38 (1989), 1-5.

[2]

D. Bresch and B. Desjardins, On the existence of global weak solutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids, J. Math. Pures Appl., 87 (2007), 57-90. doi: 10.1016/j.matpur.2006.11.001.

[3]

H. Cabannes, Theoretical Magnetofluiddynamics Academic Press, New York, London, 1970.

[4]

G.-Q. Chen and D.-H. Wang, Globla solutions of nonlinear magnetohydrodynamics with large initial data, J. Differential Equations, 182 (2002), 344-376. doi: 10.1006/jdeq.2001.4111.

[5]

G.-Q. Chen and D.-H. Wang, Existence and continuous dependence of large solutions for the magnetohydrodynamics equations, Z. Angew. Math. Phys., 54 (2003), 608-632. doi: 10.1007/s00033-003-1017-z.

[6]

Y. Cho and H. Kim, Existence results for viscous polytropic fluids with vacuum, J. Differential Equations, 228 (2006), 377-411. doi: 10.1016/j.jde.2006.05.001.

[7]

B. Ducomet and E. Feireisl, The equations of Magnetohydrodynamics: On the interaction between matter and radiation in the evolution of gaseous stars, Commun. Math. Phys., 226 (2006), 595-629. doi: 10.1007/s00220-006-0052-y.

[8]

J.-S. FanS. Jiang and G. Nakamura, Vanishing shear viscosity limit in the magnetohydrodynamic equations, Comm. Math. Phys., 270 (2007), 691-708. doi: 10.1007/s00220-006-0167-1.

[9]

J.-S. FanS. Jiang and G. Nakamura, Stability of weak solutions to equations of magnetohydrodynamics with Lebesgue initial data, J. Differential Equations, 251 (2011), 2025-2036. doi: 10.1016/j.jde.2011.06.019.

[10]

J.-S. Fan and W.-H. Yu, Global variational solutions to the compressible magnetohydrodynamic equations, Nonlinear Anal., 69 (2008), 3637-3660. doi: 10.1016/j.na.2007.10.005.

[11]

J.-S Fan and W.-H. Yu, Strong solution to the compressible magnetohydrodynamic equations with vacuum, Nonlinear Anal. Real World Appl., 10 (2009), 392-409. doi: 10.1016/j.nonrwa.2007.10.001.

[12]

E. Feireisl, Dynamics Of Viscous Compressible Fluids, Oxford Lecture Series in Mathematics and its Applications, 26 Oxford University Press, Oxford, 2004.

[13]

D. Hoff and E. Tsyganov, Uniqueness and continuous dependence of weak solutions in compressible magnetohydrodynamics, Z. Angew. Math. Phys., 56 (2005), 791-804. doi: 10.1007/s00033-005-4057-8.

[14]

X.-P. Hu and D.-H. Wang, Global existence and large-time behavior of solutions to the threedimensional equations of compressible magnetohydrodynamic flows, Arch. Ration. Mech. Anal., 197 (2010), 203-238. doi: 10.1007/s00205-010-0295-9.

[15]

X.-P. Hu and D.-H. Wang, Global solutions to the three-dimensional full compressible magnetohydrodynamic flows, Comm. Math. Phys., 283 (2008), 255-284. doi: 10.1007/s00220-008-0497-2.

[16]

X.-P. Hu and D.-H. Wang, Compactness of weak solutions to the three-dimensional compressible magnetohydrodynamic equations, J. Differential Equations, 245 (2008), 2176-2198. doi: 10.1016/j.jde.2008.07.019.

[17]

Y.-X. Hu and Q.-C. Ju, Global large solutions of magnetohydrodynamics with temperature-dependent heat conductivity, Z. Angew. Math. Phys., 66 (2015), 865-889. doi: 10.1007/s00033-014-0446-1.

[18]

X. -D. Huang and J. Li, Global Classical and Weak Solutions to the Three-Dimensional Full Compressible Navier-Stokes System with Vacuum and Large Oscillations arXiv: 1107.4655v2, [math. ph].

[19]

A. Jeffrey and T. Taniuti, Non-Linear Wave Propagation. With Applications To Physics And Magnetohydrodynamics, Academic Press, New York, 1964.

[20]

S. Kawashima, Smooth global solutions for two-dimensional equations of electromagnetofluid dynamics, Japan J. Appl. Math., 1 (1984), 207-222. doi: 10.1007/BF03167869.

[21]

S. Kawashima and M. Okada, Smooth global solutions for the one-dimensional equations in magnetohydrodynamics, Proc. Japan Acad. Ser. A Math. Sci., 58 (1982), 384-387. doi: 10.3792/pjaa.58.384.

[22]

B. Kawohl, Global existence of large solutions to initial boundary value problems for a viscous, heat-conducting, one-dimensional real gas, J. Differential Equations, 58 (1985), 76-103. doi: 10.1016/0022-0396(85)90023-3.

[23]

A. V. Kazhikhov and V. V. Shelukhin, Unique global solution with respect to time of initialboundary value problems for one-dimensional equations of a viscous gas, J. Appl. Math. Mech. , 41 (1977), 273–282, translated from Prikl. Mat. Meh. , 41 (1977), 282–291 (Russian). doi: 10.1016/0021-8928(77)90011-9.

[24]

A. G. Kulikovskiy and G. A. Lyubimov, Magnetohydrodynamics Addison-Wesley, Reading, Massachusetts, 1965.

[25]

L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media Oxford-London-New York-Paris; Addison-Wesley Publishing Co. , Inc. , Reading, Mass. 1960.

[26]

F.-C. Li and H.-Y. Yu, Optimal decay rate of classical solutions to the compressible magnetohydrodynamic equations, Proc. Roy. Soc. Edinburgh Sect. A, 141 (2011), 109-126. doi: 10.1017/S0308210509001632.

[27]

X.-L. LiN. Su and D.-H. Wang, Local strong solution to the compressible magnetohydrodynamic flow with large data, J. Hyperbolic Differ. Equ., 8 (2011), 415-436. doi: 10.1142/S0219891611002457.

[28]

T.-P Liu and Y. Zeng, Large-time behavior of solutions for general quasilinear hyperbolic-parabolic systems of conservation laws, Mem. Amer. Math. Soc., 125 (1997), viii+120 pp. doi: 10.1090/memo/0599.

[29]

R.-H. Pan and W.-Z. Zhang, Compressible Navier-Stokes equations with temperature dependent heat conductivity, Commun. Math. Sci., 13 (2015), 401-425. doi: 10.4310/CMS.2015.v13.n2.a7.

[30]

R. V. Polovin and V. P. Demutskii, Fundamentals Of Magnetohydrodynamics, Consultants Bureau, New York, 1990.

[31]

G. Ströhmer, About compressible viscous fluid flow in a bounded region, Pacific J. Math., 143 (1990), 359-375. doi: 10.2140/pjm.1990.143.359.

[32]

A. Suen and D. Hoff, About compressible viscous fluid flow in a bounded region, Pacific J. Math., 143 (1990), 359-375. doi: 10.1007/s00205-012-0498-3.

[33]

E. Tsyganov and D. Hoff, Systems of partial differential equations of mixed hyperbolic-parabolic type, J. Differential Equations, 204 (2004), 163-201. doi: 10.1016/j.jde.2004.03.010.

[34]

T. UmedaS. Kawashima and Y. Shizuta, On the decay of solutions to the linearized equations of electromagnetofluid dynamics, Japan J. Appl. Math., 1 (1984), 435-457. doi: 10.1007/BF03167068.

[35]

A. I. Vol'pert and S. I. Hudjaev, On the Cauchy problem for composite systems of nonlinear differential equations, (Russian), Mat. Sb. (N.S.), 87(129) (1972), 504-528.

[36]

D.-H. Wang, Large solutions to the initial-boundary value problem for planar magnetohydrodynamics, SIAM J. Appl. Math., 63 (2003), 1424-1441. doi: 10.1137/S0036139902409284.

[37]

H. Wen and C. Zhu, Global classical large solutions to Navier-Stokes equations for viscous compressible and heat conducting fluids with vacuum, SIAM J. Math. Anal., 45 (2013), 431-468. doi: 10.1137/120877829.

[38]

H.-Y. Wen and C.-J. Zhu, Global symmetric classical and strong solutions of the full compressible Navier-Stokes equations with vacuum and large initial data, J. Math. Pures Appl.(9), 102 (2014), 498-545. doi: 10.1016/j.matpur.2013.12.003.

[39]

J.-W. ZhangS. Jiang and F. Xie, Global weak solutions of an initial boundary value problem for screw pinches in plasma physics, Math. Models Methods Appl. Sci., 19 (2009), 833-875. doi: 10.1142/S0218202509003644.

[40]

A. A. Zlotnik and A. A. Amosov, On stability of generalized solutions to the equations of one-dimensional motion of a viscous heat-conducting gas, Sib. Math. J., 38 (1997), 663-684. doi: 10.1007/BF02674573.

[41]

A. A. Zlotnik and A. A. Amosov, Stability of generalized solutions to equations of one-dimensional motion of viscous heat conducting gases, Math. Notes, 63 (1998), 736-746. doi: 10.1007/BF02312766.

show all references

References:
[1]

A. A. Amosov and A. A. Zlotnik, Global generalized solutions of the equations of the one-dimensional motion of a viscous heat-conducting gas, Sov. Mat. Dokl., 38 (1989), 1-5.

[2]

D. Bresch and B. Desjardins, On the existence of global weak solutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids, J. Math. Pures Appl., 87 (2007), 57-90. doi: 10.1016/j.matpur.2006.11.001.

[3]

H. Cabannes, Theoretical Magnetofluiddynamics Academic Press, New York, London, 1970.

[4]

G.-Q. Chen and D.-H. Wang, Globla solutions of nonlinear magnetohydrodynamics with large initial data, J. Differential Equations, 182 (2002), 344-376. doi: 10.1006/jdeq.2001.4111.

[5]

G.-Q. Chen and D.-H. Wang, Existence and continuous dependence of large solutions for the magnetohydrodynamics equations, Z. Angew. Math. Phys., 54 (2003), 608-632. doi: 10.1007/s00033-003-1017-z.

[6]

Y. Cho and H. Kim, Existence results for viscous polytropic fluids with vacuum, J. Differential Equations, 228 (2006), 377-411. doi: 10.1016/j.jde.2006.05.001.

[7]

B. Ducomet and E. Feireisl, The equations of Magnetohydrodynamics: On the interaction between matter and radiation in the evolution of gaseous stars, Commun. Math. Phys., 226 (2006), 595-629. doi: 10.1007/s00220-006-0052-y.

[8]

J.-S. FanS. Jiang and G. Nakamura, Vanishing shear viscosity limit in the magnetohydrodynamic equations, Comm. Math. Phys., 270 (2007), 691-708. doi: 10.1007/s00220-006-0167-1.

[9]

J.-S. FanS. Jiang and G. Nakamura, Stability of weak solutions to equations of magnetohydrodynamics with Lebesgue initial data, J. Differential Equations, 251 (2011), 2025-2036. doi: 10.1016/j.jde.2011.06.019.

[10]

J.-S. Fan and W.-H. Yu, Global variational solutions to the compressible magnetohydrodynamic equations, Nonlinear Anal., 69 (2008), 3637-3660. doi: 10.1016/j.na.2007.10.005.

[11]

J.-S Fan and W.-H. Yu, Strong solution to the compressible magnetohydrodynamic equations with vacuum, Nonlinear Anal. Real World Appl., 10 (2009), 392-409. doi: 10.1016/j.nonrwa.2007.10.001.

[12]

E. Feireisl, Dynamics Of Viscous Compressible Fluids, Oxford Lecture Series in Mathematics and its Applications, 26 Oxford University Press, Oxford, 2004.

[13]

D. Hoff and E. Tsyganov, Uniqueness and continuous dependence of weak solutions in compressible magnetohydrodynamics, Z. Angew. Math. Phys., 56 (2005), 791-804. doi: 10.1007/s00033-005-4057-8.

[14]

X.-P. Hu and D.-H. Wang, Global existence and large-time behavior of solutions to the threedimensional equations of compressible magnetohydrodynamic flows, Arch. Ration. Mech. Anal., 197 (2010), 203-238. doi: 10.1007/s00205-010-0295-9.

[15]

X.-P. Hu and D.-H. Wang, Global solutions to the three-dimensional full compressible magnetohydrodynamic flows, Comm. Math. Phys., 283 (2008), 255-284. doi: 10.1007/s00220-008-0497-2.

[16]

X.-P. Hu and D.-H. Wang, Compactness of weak solutions to the three-dimensional compressible magnetohydrodynamic equations, J. Differential Equations, 245 (2008), 2176-2198. doi: 10.1016/j.jde.2008.07.019.

[17]

Y.-X. Hu and Q.-C. Ju, Global large solutions of magnetohydrodynamics with temperature-dependent heat conductivity, Z. Angew. Math. Phys., 66 (2015), 865-889. doi: 10.1007/s00033-014-0446-1.

[18]

X. -D. Huang and J. Li, Global Classical and Weak Solutions to the Three-Dimensional Full Compressible Navier-Stokes System with Vacuum and Large Oscillations arXiv: 1107.4655v2, [math. ph].

[19]

A. Jeffrey and T. Taniuti, Non-Linear Wave Propagation. With Applications To Physics And Magnetohydrodynamics, Academic Press, New York, 1964.

[20]

S. Kawashima, Smooth global solutions for two-dimensional equations of electromagnetofluid dynamics, Japan J. Appl. Math., 1 (1984), 207-222. doi: 10.1007/BF03167869.

[21]

S. Kawashima and M. Okada, Smooth global solutions for the one-dimensional equations in magnetohydrodynamics, Proc. Japan Acad. Ser. A Math. Sci., 58 (1982), 384-387. doi: 10.3792/pjaa.58.384.

[22]

B. Kawohl, Global existence of large solutions to initial boundary value problems for a viscous, heat-conducting, one-dimensional real gas, J. Differential Equations, 58 (1985), 76-103. doi: 10.1016/0022-0396(85)90023-3.

[23]

A. V. Kazhikhov and V. V. Shelukhin, Unique global solution with respect to time of initialboundary value problems for one-dimensional equations of a viscous gas, J. Appl. Math. Mech. , 41 (1977), 273–282, translated from Prikl. Mat. Meh. , 41 (1977), 282–291 (Russian). doi: 10.1016/0021-8928(77)90011-9.

[24]

A. G. Kulikovskiy and G. A. Lyubimov, Magnetohydrodynamics Addison-Wesley, Reading, Massachusetts, 1965.

[25]

L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media Oxford-London-New York-Paris; Addison-Wesley Publishing Co. , Inc. , Reading, Mass. 1960.

[26]

F.-C. Li and H.-Y. Yu, Optimal decay rate of classical solutions to the compressible magnetohydrodynamic equations, Proc. Roy. Soc. Edinburgh Sect. A, 141 (2011), 109-126. doi: 10.1017/S0308210509001632.

[27]

X.-L. LiN. Su and D.-H. Wang, Local strong solution to the compressible magnetohydrodynamic flow with large data, J. Hyperbolic Differ. Equ., 8 (2011), 415-436. doi: 10.1142/S0219891611002457.

[28]

T.-P Liu and Y. Zeng, Large-time behavior of solutions for general quasilinear hyperbolic-parabolic systems of conservation laws, Mem. Amer. Math. Soc., 125 (1997), viii+120 pp. doi: 10.1090/memo/0599.

[29]

R.-H. Pan and W.-Z. Zhang, Compressible Navier-Stokes equations with temperature dependent heat conductivity, Commun. Math. Sci., 13 (2015), 401-425. doi: 10.4310/CMS.2015.v13.n2.a7.

[30]

R. V. Polovin and V. P. Demutskii, Fundamentals Of Magnetohydrodynamics, Consultants Bureau, New York, 1990.

[31]

G. Ströhmer, About compressible viscous fluid flow in a bounded region, Pacific J. Math., 143 (1990), 359-375. doi: 10.2140/pjm.1990.143.359.

[32]

A. Suen and D. Hoff, About compressible viscous fluid flow in a bounded region, Pacific J. Math., 143 (1990), 359-375. doi: 10.1007/s00205-012-0498-3.

[33]

E. Tsyganov and D. Hoff, Systems of partial differential equations of mixed hyperbolic-parabolic type, J. Differential Equations, 204 (2004), 163-201. doi: 10.1016/j.jde.2004.03.010.

[34]

T. UmedaS. Kawashima and Y. Shizuta, On the decay of solutions to the linearized equations of electromagnetofluid dynamics, Japan J. Appl. Math., 1 (1984), 435-457. doi: 10.1007/BF03167068.

[35]

A. I. Vol'pert and S. I. Hudjaev, On the Cauchy problem for composite systems of nonlinear differential equations, (Russian), Mat. Sb. (N.S.), 87(129) (1972), 504-528.

[36]

D.-H. Wang, Large solutions to the initial-boundary value problem for planar magnetohydrodynamics, SIAM J. Appl. Math., 63 (2003), 1424-1441. doi: 10.1137/S0036139902409284.

[37]

H. Wen and C. Zhu, Global classical large solutions to Navier-Stokes equations for viscous compressible and heat conducting fluids with vacuum, SIAM J. Math. Anal., 45 (2013), 431-468. doi: 10.1137/120877829.

[38]

H.-Y. Wen and C.-J. Zhu, Global symmetric classical and strong solutions of the full compressible Navier-Stokes equations with vacuum and large initial data, J. Math. Pures Appl.(9), 102 (2014), 498-545. doi: 10.1016/j.matpur.2013.12.003.

[39]

J.-W. ZhangS. Jiang and F. Xie, Global weak solutions of an initial boundary value problem for screw pinches in plasma physics, Math. Models Methods Appl. Sci., 19 (2009), 833-875. doi: 10.1142/S0218202509003644.

[40]

A. A. Zlotnik and A. A. Amosov, On stability of generalized solutions to the equations of one-dimensional motion of a viscous heat-conducting gas, Sib. Math. J., 38 (1997), 663-684. doi: 10.1007/BF02674573.

[41]

A. A. Zlotnik and A. A. Amosov, Stability of generalized solutions to equations of one-dimensional motion of viscous heat conducting gases, Math. Notes, 63 (1998), 736-746. doi: 10.1007/BF02312766.

[1]

Yaobin Ou, Pan Shi. Global classical solutions to the free boundary problem of planar full magnetohydrodynamic equations with large initial data. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 537-567. doi: 10.3934/dcdsb.2017026

[2]

Xumin Gu. Well-posedness of axially symmetric incompressible ideal magnetohydrodynamic equations with vacuum under the non-collinearity condition. Communications on Pure & Applied Analysis, 2019, 18 (2) : 569-602. doi: 10.3934/cpaa.2019029

[3]

Fucai Li, Yanmin Mu, Dehua Wang. Local well-posedness and low Mach number limit of the compressible magnetohydrodynamic equations in critical spaces. Kinetic & Related Models, 2017, 10 (3) : 741-784. doi: 10.3934/krm.2017030

[4]

Hiroyuki Hirayama. Well-posedness and scattering for a system of quadratic derivative nonlinear Schrödinger equations with low regularity initial data. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1563-1591. doi: 10.3934/cpaa.2014.13.1563

[5]

P. Blue, J. Colliander. Global well-posedness in Sobolev space implies global existence for weighted $L^2$ initial data for $L^2$-critical NLS. Communications on Pure & Applied Analysis, 2006, 5 (4) : 691-708. doi: 10.3934/cpaa.2006.5.691

[6]

Yong Zhou, Jishan Fan. Local well-posedness for the ideal incompressible density dependent magnetohydrodynamic equations. Communications on Pure & Applied Analysis, 2010, 9 (3) : 813-818. doi: 10.3934/cpaa.2010.9.813

[7]

Jishan Fan, Yueling Jia. Local well-posedness of the full compressible Navier-Stokes-Maxwell system with vacuum. Kinetic & Related Models, 2018, 11 (1) : 97-106. doi: 10.3934/krm.2018005

[8]

Thomas Y. Hou, Congming Li. Global well-posedness of the viscous Boussinesq equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (1) : 1-12. doi: 10.3934/dcds.2005.12.1

[9]

Luc Molinet, Francis Ribaud. On global well-posedness for a class of nonlocal dispersive wave equations. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 657-668. doi: 10.3934/dcds.2006.15.657

[10]

Peng Jiang. Global well-posedness and large time behavior of classical solutions to the diffusion approximation model in radiation hydrodynamics. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 2045-2063. doi: 10.3934/dcds.2017087

[11]

Hermen Jan Hupkes, Emmanuelle Augeraud-Véron. Well-posedness of initial value problems for functional differential and algebraic equations of mixed type. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 737-765. doi: 10.3934/dcds.2011.30.737

[12]

Saoussen Sokrani. On the global well-posedness of 3-D Boussinesq system with partial viscosity and axisymmetric data. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 1613-1650. doi: 10.3934/dcds.2019072

[13]

Qing Chen, Zhong Tan. Global existence in critical spaces for the compressible magnetohydrodynamic equations. Kinetic & Related Models, 2012, 5 (4) : 743-767. doi: 10.3934/krm.2012.5.743

[14]

Qiang Tao, Ying Yang. Exponential stability for the compressible nematic liquid crystal flow with large initial data. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1661-1669. doi: 10.3934/cpaa.2016007

[15]

Ivonne Rivas, Muhammad Usman, Bing-Yu Zhang. Global well-posedness and asymptotic behavior of a class of initial-boundary-value problem of the Korteweg-De Vries equation on a finite domain. Mathematical Control & Related Fields, 2011, 1 (1) : 61-81. doi: 10.3934/mcrf.2011.1.61

[16]

Xiaoli Li, Boling Guo. Well-posedness for the three-dimensional compressible liquid crystal flows. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1913-1937. doi: 10.3934/dcdss.2016078

[17]

George Avalos, Pelin G. Geredeli, Justin T. Webster. Semigroup well-posedness of a linearized, compressible fluid with an elastic boundary. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1267-1295. doi: 10.3934/dcdsb.2018151

[18]

Xiaoping Zhai, Zhaoyang Yin. Global solutions to the Chemotaxis-Navier-Stokes equations with some large initial data. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2829-2859. doi: 10.3934/dcds.2017122

[19]

Fei Chen, Yongsheng Li, Huan Xu. Global solution to the 3D nonhomogeneous incompressible MHD equations with some large initial data. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 2945-2967. doi: 10.3934/dcds.2016.36.2945

[20]

Bingkang Huang, Lan Zhang. A global existence of classical solutions to the two-dimensional Vlasov-Fokker-Planck and magnetohydrodynamics equations with large initial data. Kinetic & Related Models, 2019, 12 (2) : 357-396. doi: 10.3934/krm.2019016

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (26)
  • HTML views (80)
  • Cited by (2)

Other articles
by authors

[Back to Top]