\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Global strong solutions to the planar compressible magnetohydrodynamic equations with large initial data and vacuum

  • * S. Huang is the corresponding author

    * S. Huang is the corresponding author 
Abstract Full Text(HTML) Related Papers Cited by
  • This paper considers the initial boundary problem to the planar compressible magnetohydrodynamic equations with large initial data and vacuum. The global existence and uniqueness of large strong solutions are established when the heat conductivity coefficient $κ(θ)$ satisfies

    $C_{1}(1+\theta^q)\leq \kappa(\theta)\leq C_2(1+\theta^q)$

    for some constants $q>0$, and $C_1,C_2>0$.

    Mathematics Subject Classification: Primary: 35Q30; Secondary: 35K65, 76N10.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  •   A. A. Amosov  and  A. A. Zlotnik , Global generalized solutions of the equations of the one-dimensional motion of a viscous heat-conducting gas, Sov. Mat. Dokl., 38 (1989) , 1-5. 
      D. Bresch  and  B. Desjardins , On the existence of global weak solutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids, J. Math. Pures Appl., 87 (2007) , 57-90.  doi: 10.1016/j.matpur.2006.11.001.
      H. Cabannes, Theoretical Magnetofluiddynamics Academic Press, New York, London, 1970.
      G.-Q. Chen  and  D.-H. Wang , Globla solutions of nonlinear magnetohydrodynamics with large initial data, J. Differential Equations, 182 (2002) , 344-376.  doi: 10.1006/jdeq.2001.4111.
      G.-Q. Chen  and  D.-H. Wang , Existence and continuous dependence of large solutions for the magnetohydrodynamics equations, Z. Angew. Math. Phys., 54 (2003) , 608-632.  doi: 10.1007/s00033-003-1017-z.
      Y. Cho  and  H. Kim , Existence results for viscous polytropic fluids with vacuum, J. Differential Equations, 228 (2006) , 377-411.  doi: 10.1016/j.jde.2006.05.001.
      B. Ducomet  and  E. Feireisl , The equations of Magnetohydrodynamics: On the interaction between matter and radiation in the evolution of gaseous stars, Commun. Math. Phys., 226 (2006) , 595-629.  doi: 10.1007/s00220-006-0052-y.
      J.-S. Fan , S. Jiang  and  G. Nakamura , Vanishing shear viscosity limit in the magnetohydrodynamic equations, Comm. Math. Phys., 270 (2007) , 691-708.  doi: 10.1007/s00220-006-0167-1.
      J.-S. Fan , S. Jiang  and  G. Nakamura , Stability of weak solutions to equations of magnetohydrodynamics with Lebesgue initial data, J. Differential Equations, 251 (2011) , 2025-2036.  doi: 10.1016/j.jde.2011.06.019.
      J.-S. Fan  and  W.-H. Yu , Global variational solutions to the compressible magnetohydrodynamic equations, Nonlinear Anal., 69 (2008) , 3637-3660.  doi: 10.1016/j.na.2007.10.005.
      J.-S Fan  and  W.-H. Yu , Strong solution to the compressible magnetohydrodynamic equations with vacuum, Nonlinear Anal. Real World Appl., 10 (2009) , 392-409.  doi: 10.1016/j.nonrwa.2007.10.001.
      E. Feireisl, Dynamics Of Viscous Compressible Fluids, Oxford Lecture Series in Mathematics and its Applications, 26 Oxford University Press, Oxford, 2004.
      D. Hoff  and  E. Tsyganov , Uniqueness and continuous dependence of weak solutions in compressible magnetohydrodynamics, Z. Angew. Math. Phys., 56 (2005) , 791-804.  doi: 10.1007/s00033-005-4057-8.
      X.-P. Hu  and  D.-H. Wang , Global existence and large-time behavior of solutions to the threedimensional equations of compressible magnetohydrodynamic flows, Arch. Ration. Mech. Anal., 197 (2010) , 203-238.  doi: 10.1007/s00205-010-0295-9.
      X.-P. Hu  and  D.-H. Wang , Global solutions to the three-dimensional full compressible magnetohydrodynamic flows, Comm. Math. Phys., 283 (2008) , 255-284.  doi: 10.1007/s00220-008-0497-2.
      X.-P. Hu  and  D.-H. Wang , Compactness of weak solutions to the three-dimensional compressible magnetohydrodynamic equations, J. Differential Equations, 245 (2008) , 2176-2198.  doi: 10.1016/j.jde.2008.07.019.
      Y.-X. Hu  and  Q.-C. Ju , Global large solutions of magnetohydrodynamics with temperature-dependent heat conductivity, Z. Angew. Math. Phys., 66 (2015) , 865-889.  doi: 10.1007/s00033-014-0446-1.
      X. -D. Huang and J. Li, Global Classical and Weak Solutions to the Three-Dimensional Full Compressible Navier-Stokes System with Vacuum and Large Oscillations arXiv: 1107.4655v2, [math. ph].
      A. Jeffrey and T. Taniuti, Non-Linear Wave Propagation. With Applications To Physics And Magnetohydrodynamics, Academic Press, New York, 1964.
      S. Kawashima , Smooth global solutions for two-dimensional equations of electromagnetofluid dynamics, Japan J. Appl. Math., 1 (1984) , 207-222.  doi: 10.1007/BF03167869.
      S. Kawashima  and  M. Okada , Smooth global solutions for the one-dimensional equations in magnetohydrodynamics, Proc. Japan Acad. Ser. A Math. Sci., 58 (1982) , 384-387.  doi: 10.3792/pjaa.58.384.
      B. Kawohl , Global existence of large solutions to initial boundary value problems for a viscous, heat-conducting, one-dimensional real gas, J. Differential Equations, 58 (1985) , 76-103.  doi: 10.1016/0022-0396(85)90023-3.
      A. V. Kazhikhov and V. V. Shelukhin, Unique global solution with respect to time of initialboundary value problems for one-dimensional equations of a viscous gas, J. Appl. Math. Mech. , 41 (1977), 273–282, translated from Prikl. Mat. Meh. , 41 (1977), 282–291 (Russian). doi: 10.1016/0021-8928(77)90011-9.
      A. G. Kulikovskiy and G. A. Lyubimov, Magnetohydrodynamics Addison-Wesley, Reading, Massachusetts, 1965.
      L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media Oxford-London-New York-Paris; Addison-Wesley Publishing Co. , Inc. , Reading, Mass. 1960.
      F.-C. Li  and  H.-Y. Yu , Optimal decay rate of classical solutions to the compressible magnetohydrodynamic equations, Proc. Roy. Soc. Edinburgh Sect. A, 141 (2011) , 109-126.  doi: 10.1017/S0308210509001632.
      X.-L. Li , N. Su  and  D.-H. Wang , Local strong solution to the compressible magnetohydrodynamic flow with large data, J. Hyperbolic Differ. Equ., 8 (2011) , 415-436.  doi: 10.1142/S0219891611002457.
      T.-P Liu  and  Y. Zeng , Large-time behavior of solutions for general quasilinear hyperbolic-parabolic systems of conservation laws, Mem. Amer. Math. Soc., 125 (1997) , viii+120 pp.  doi: 10.1090/memo/0599.
      R.-H. Pan  and  W.-Z. Zhang , Compressible Navier-Stokes equations with temperature dependent heat conductivity, Commun. Math. Sci., 13 (2015) , 401-425.  doi: 10.4310/CMS.2015.v13.n2.a7.
      R. V. Polovin and V. P. Demutskii, Fundamentals Of Magnetohydrodynamics, Consultants Bureau, New York, 1990.
      G. Ströhmer , About compressible viscous fluid flow in a bounded region, Pacific J. Math., 143 (1990) , 359-375.  doi: 10.2140/pjm.1990.143.359.
      A. Suen  and  D. Hoff , About compressible viscous fluid flow in a bounded region, Pacific J. Math., 143 (1990) , 359-375.  doi: 10.1007/s00205-012-0498-3.
      E. Tsyganov  and  D. Hoff , Systems of partial differential equations of mixed hyperbolic-parabolic type, J. Differential Equations, 204 (2004) , 163-201.  doi: 10.1016/j.jde.2004.03.010.
      T. Umeda , S. Kawashima  and  Y. Shizuta , On the decay of solutions to the linearized equations of electromagnetofluid dynamics, Japan J. Appl. Math., 1 (1984) , 435-457.  doi: 10.1007/BF03167068.
      A. I. Vol'pert  and  S. I. Hudjaev , On the Cauchy problem for composite systems of nonlinear differential equations, (Russian), Mat. Sb. (N.S.), 87(129) (1972) , 504-528. 
      D.-H. Wang , Large solutions to the initial-boundary value problem for planar magnetohydrodynamics, SIAM J. Appl. Math., 63 (2003) , 1424-1441.  doi: 10.1137/S0036139902409284.
      H. Wen  and  C. Zhu , Global classical large solutions to Navier-Stokes equations for viscous compressible and heat conducting fluids with vacuum, SIAM J. Math. Anal., 45 (2013) , 431-468.  doi: 10.1137/120877829.
      H.-Y. Wen  and  C.-J. Zhu , Global symmetric classical and strong solutions of the full compressible Navier-Stokes equations with vacuum and large initial data, J. Math. Pures Appl., 102 (2014) , 498-545.  doi: 10.1016/j.matpur.2013.12.003.
      J.-W. Zhang , S. Jiang  and  F. Xie , Global weak solutions of an initial boundary value problem for screw pinches in plasma physics, Math. Models Methods Appl. Sci., 19 (2009) , 833-875.  doi: 10.1142/S0218202509003644.
      A. A. Zlotnik  and  A. A. Amosov , On stability of generalized solutions to the equations of one-dimensional motion of a viscous heat-conducting gas, Sib. Math. J., 38 (1997) , 663-684.  doi: 10.1007/BF02674573.
      A. A. Zlotnik  and  A. A. Amosov , Stability of generalized solutions to equations of one-dimensional motion of viscous heat conducting gases, Math. Notes, 63 (1998) , 736-746.  doi: 10.1007/BF02312766.
  • 加载中
SHARE

Article Metrics

HTML views(428) PDF downloads(183) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return