It is interesting to analyze the mutual influence of relativistic effect and electrostatic potential force on the qualitative behaviors of charge particles simulated by the one-species relativistic Vlasov-Poisson-Landau (rVPL) system with the physical Coulombic interaction. In this paper, we first study the spectrum structure on the linearized rVPL system and obtain the optimal time decay rates of the solutions to the linearized system, and then we construct global strong solutions to the nonlinear system around a global relativistic Maxwellian. Finally we make use of time decay rates of the solutions to the linearized system and uniform energy estimates to establish the time decay of the global solution to the original Cauchy problem for the rVPL system to the absolute Maxwellian at the optimal convergence rate $(1+t)^{-3/4}$. This time rate is faster than the optimal rate $(1+t)^{-1/4}$ of classical Vlasov-Poisson-Boltzmann [
Citation: |
R.-J. Duan
, Global smooth dynamics of a fully ionized plasma with long-range collisions, Ann. I. H. Poincaré, 31 (2014)
, 751-778.
doi: 10.1016/j.anihpc.2013.07.004.![]() ![]() ![]() |
|
R.-J. Duan
and R. Strain
, Optimal time decay of the Vlasov-Poisson-Boltzmann system in $\mathbb{R}^3$, Arch. Ration. Mech. Anal., 199 (2011)
, 291-328.
doi: 10.1007/s00205-010-0318-6.![]() ![]() ![]() |
|
R. S. Ellis
and M. A. Pinsky
, The first and second fluid approximations to the linearized Boltzmann equation, J. Math. pure et appl., 54 (1975)
, 125-156.
![]() |
|
Y. Guo
, The Vlasov-Poisson-Landau system in a periodic box, J. Amer. Math. Soc., 25 (2012)
, 759-812.
doi: 10.1090/S0894-0347-2011-00722-4.![]() ![]() ![]() |
|
F. L. Hinton, Collisional transport in plasma. In Handbook of Plasma Physics, Volume Ⅰ: Basic Plasma Physics Ⅰ Rosenbluth M. N. and Sagdeev R. Z. (eds. ), Amsterdam: North-Holland Publishing Company, 1983, pp. 147.
![]() |
|
T. Kato,
Perturbation Theory of Linear Operator Springer, New York, 1996.
![]() |
|
Y. Lei
and H. Zhao
, Negative Sobolev Spaces and the Two-species Vlasov-Maxwell-Landau
System in the Whole Space, J. Funct. Anal., 267 (2014)
, 3710-3757.
doi: 10.1016/j.jfa.2014.09.011.![]() ![]() ![]() |
|
Y. Lei
, L. Xiong
and H. Zhao
, One-species Vlasov-Poisson-Landau system near Maxwellians in the whole space, Kinet. Relat. Models, 7 (2014)
, 551-590.
doi: 10.3934/krm.2014.7.551.![]() ![]() ![]() |
|
M. Lemou
, Linearized quantum and relativistic Fokker-Planck-Landau equations, Math. Methods Appl. Sci., 23 (2000)
, 1093-1119.
doi: 10.1002/1099-1476(200008)23:12<1093::AID-MMA153>3.0.CO;2-8.![]() ![]() ![]() |
|
H. -L. Li, T. Yang and M. Zhong, Spectrum analysis for the Vlasov-Poisson-Boltzmann system,
preprint, arXiv: 1402.3633v1, [math. AP].
![]() |
|
H.-L. Li
, T. Yang
and M. Zhong
, Spectrum analysis and optimal decay rates of the bipolar Vlasov-Poisson-Boltzmann equations, Indiana Univ. Math. J., 65 (2016)
, 665-725.
doi: 10.1512/iumj.2016.65.5730.![]() ![]() ![]() |
|
H.-L. Li
, T. Yang
, J. Sun
and M. Zhong
, Large time behavior of solutions to Vlasov-Poisson-Landau (Fokker-Planck) equations (in Chinese), Sci Sin Math, 46 (2016)
, 981-1004.
![]() |
|
S.-Q. Liu
and H.-J. Zhao
, Optimal large-time decay of the relativistic Landau-Maxwell system, J. Differential Equations, 256 (2014)
, 832-857.
doi: 10.1016/j.jde.2013.10.004.![]() ![]() ![]() |
|
T.-P. Liu
, T. Yang
and S.-H. Yu
, Energy method for the Boltzmann equation, Physica D, 188 (2004)
, 178-192.
doi: 10.1016/j.physd.2003.07.011.![]() ![]() ![]() |
|
L. Luo
and H.-J. Yu
, Spectrum analysis of the linearized relativistic Landau equation, J. Stat. Phys., 163 (2016)
, 914-935.
doi: 10.1007/s10955-016-1501-4.![]() ![]() ![]() |
|
A. Pazy,
Semigroups of Linear Operators and Applications to Partial Differential Equations Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-5561-1.![]() ![]() ![]() |
|
R. M. Strain
, The Vlasov-Poisson-Landau System in $\mathbb{R}^3_x$, Arch. Rational Mech. Anal., 210 (2013)
, 615-671.
doi: 10.1007/s00205-013-0658-0.![]() ![]() ![]() |
|
R. M. Strain
and Y. Guo
, Stability of the relativistic Maxwellian in a collisional plasma, Comm. Math. Phys., 251 (2004)
, 263-320.
doi: 10.1007/s00220-004-1151-2.![]() ![]() ![]() |
|
R. M. Strain
and Y. Guo
, Almost exponential decay near Maxwellian, Comm. P.D.E., 31 (2006)
, 417-429.
doi: 10.1080/03605300500361545.![]() ![]() ![]() |
|
S. Ukai and T. Yang,
Mathematical Theory of Boltzmann Equation Lecture Notes Series-No. 8, Hong Kong: Liu Bie Ju Center for Mathematical Sciences, City University of Hong Kong, 2006.
![]() |
|
Y. Wang
, Global solution and time decay of the Vlasov-Poisson-Landau system in $\mathbb{R}^3$, SIAM J. Math. Anal., 44 (2012)
, 3281-3323.
doi: 10.1137/120879129.![]() ![]() ![]() |
|
T. Yang
and H.-J. Yu
, Spectrum analysis of some kinetic equations, Arch. Ration. Mech. Anal., 222 (2016)
, 731-768.
doi: 10.1007/s00205-016-1010-2.![]() ![]() ![]() |
|
T. Yang
and H.-J. Yu
, Hypocoercivity of the relativistic Boltzmann and Landau equations in the whole space, J. Differential Equations, 248 (2010)
, 1518-1560.
doi: 10.1016/j.jde.2009.11.027.![]() ![]() ![]() |
|
T. Yang
and H.-J. Yu
, Global solutions to the relativistic Landau-Maxwell system in the whole space, J. Math. Pures Appl., 97 (2012)
, 602-634.
doi: 10.1016/j.matpur.2011.09.006.![]() ![]() ![]() |
|
T. Yang
, H.-J. Yu
and H.-J. Zhao
, Cauchy problem for the Vlasov-Poisson-Boltzmann system, Arch. Ration. Mech. Anal., 182 (2006)
, 415-470.
doi: 10.1007/s00205-006-0009-5.![]() ![]() ![]() |
|
T. Yang
and H.-J. Zhao
, Global existence of classical solutions to the Vlasov-Poisson-Boltzmann system, Comm. Math. Phys., 268 (2006)
, 569-605.
doi: 10.1007/s00220-006-0103-4.![]() ![]() ![]() |