December  2017, 10(4): 1127-1161. doi: 10.3934/krm.2017044

First-order quarter-and mixed-moment realizability theory and Kershaw closures for a Fokker-Planck equation in two space dimensions

Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany

* Corresponding author: Florian Schneider

Received  August 2016 Revised  November 2016 Published  March 2017

Mixed-moment models, introduced in [8,44] for one space dimension, are a modification of the method of moments applied to a (linear) kinetic equation, by choosing mixtures of different partial moments. They are well-suited to handle equations where collisions of particles are modelled with a Laplace-Beltrami operator. We generalize the concept of mixed moments to two dimensions. In the context of minimum-entropy models, the resulting hyperbolic system of equations has desirable properties (entropy-diminishing, bounded eigenvalues), removing some drawbacks of the well-known M1 model. We furthermore provide a realizability theory for a first-order system of mixed moments by linking it to the corresponding quarter-moment theory. Additionally, we derive a type of Kershaw closures for mixed-and quarter-moment models, giving an efficient closure (compared to minimum-entropy models). The derived closures are investigated for different benchmark problems.

Citation: Florian Schneider, Andreas Roth, Jochen Kall. First-order quarter-and mixed-moment realizability theory and Kershaw closures for a Fokker-Planck equation in two space dimensions. Kinetic & Related Models, 2017, 10 (4) : 1127-1161. doi: 10.3934/krm.2017044
References:
[1]

G. W. AlldredgeC. D. HauckD. P. O'Leary and A. L. Tits, Adaptive change of basis in entropy-based moment closures for linear kinetic equations, Journal of Computational Physics, 258 (2014), 489-508.  doi: 10.1016/j.jcp.2013.10.049.  Google Scholar

[2]

G. W. AlldredgeC. D. Hauck and A. L. Tits, High-Order Entropy-Based Closures for Linear Transport in Slab Geometry Ⅱ: A Computational Study of the Optimization Problem, SIAM Journal on Scientific Computing, 34 (2012), B361-B391.  doi: 10.1137/11084772X.  Google Scholar

[3]

G. W. Alldredge and F. Schneider, A realizability-preserving discontinuous Galerkin scheme for entropy-based moment closures for linear kinetic equations in one space dimension, Journal of Computational Physics, 295 (2015), 665-684.  doi: 10.1016/j.jcp.2015.04.034.  Google Scholar

[4]

U. AscherS. Ruuth and R. Spiteri, Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations, Applied Numerical Mathematics, 25 (1997), 151-167.  doi: 10.1016/S0168-9274(97)00056-1.  Google Scholar

[5]

G. I. Bell and S. Glasstone, Nuclear Reactor Theory Technical report, Division of Technical Information, US Atomic Energy Commission, 1970. Google Scholar

[6]

M. A. BlancoM. Flórez and M. Bermejo, Evaluation of the rotation matrices in the basis of real spherical harmonics, Journal of Molecular Structure, 419 (1997), 19-27.  doi: 10.1016/S0166-1280(97)00185-1.  Google Scholar

[7]

T. A. Brunner and J. P. Holloway, One-dimensional Riemann solvers and the maximum entropy closure, Journal of Quantitative Spectroscopy and Radiative Transfer, 69 (2001), 543-566.  doi: 10.1016/S0022-4073(00)00099-6.  Google Scholar

[8]

T. A. Brunner and J. P. Holloway, Two-dimensional time dependent Riemann solvers for neutron transport, Journal of Computational Physics, 210 (2005), 386-399.  doi: 10.1016/j.jcp.2005.04.011.  Google Scholar

[9]

J. A. CarrilloA. Klar and A. Roth, Single to double mill small noise transition via semi-lagrangian finite volume methods, Commun. Math. Sci., 14 (2016), 1111-1136.  doi: 10.4310/CMS.2016.v14.n4.a12.  Google Scholar

[10]

R. E. R. Curto and L. A. Fialkow, Recursiveness, positivity, and truncated moment problems, Houston J. Math, 17 (1991), 603–635, URL https://www.math.uh.edu/~hjm/v017n4/ 0603CURTO.pdf  Google Scholar

[11]

B. Dubroca and J.-L. Feugeas, Entropic moment closure hierarchy for the radiative transfer equation, C. R. Acad. Sci. Paris Ser. I, 329 (1999), 915-920.  doi: 10.1016/S0764-4442(00)87499-6.  Google Scholar

[12]

B. Dubroca and A. Klar, Half-moment closure for radiative transfer equations, Journal of Computational Physics, 180 (2002), 584-596.  doi: 10.1006/jcph.2002.7106.  Google Scholar

[13]

A. S. Eddington, The Internal Constitution of the Stars Dover, 1926. Google Scholar

[14]

A. Ern and J. L. Guermond, Theory and Practice of Finite Elements Applied Mathematical Sciences, Springer New York, 2004, https://books.google.de/books?id=CCjm79FbJbcC. doi: 10.1007/978-1-4757-4355-5.  Google Scholar

[15]

G. D. Fies and M. Vianello, Trigonometric Gaussian quadrature on subintervals of the period, Electronic Transactions on Numerical Analysis, 39 (2012), 102–112, URL http://www.emis. ams.org/journals/ETNA/vol.39.2012/pp102-112.dir/pp102-112.pdf. Google Scholar

[16]

G. D. Fies and M. Vianello, Trigonometric Gaussian quadrature on subintervals of the period, Electronic Transactions on Numerical Analysis, 39 (2012), 102-112.   Google Scholar

[17]

M. Frank, Partial moment entropy approximation to radiative heat transfer, Pamm, 5 (2005), 659-660.  doi: 10.1002/pamm.200510306.  Google Scholar

[18]

M. FrankB. Dubroca and A. Klar, Partial moment entropy approximation to radiative heat transfer, Journal of Computational Physics, 218 (2006), 1-18.  doi: 10.1016/j.jcp.2006.01.038.  Google Scholar

[19]

M. FrankH. Hensel and A. Klar, A fast and accurate moment method for the Fokker-Planck equation and applications to electron radiotherapy, SIAM Journal on Applied Mathematics, 67 (2007), 582-603.  doi: 10.1137/06065547X.  Google Scholar

[20]

W. Fulton, Eigenvalues of sums of Hermitian matrices, Séminaire Bourbaki, 40 (1998), 255-269.   Google Scholar

[21]

C. K. Garrett and C. D. Hauck, A comparison of moment closures for linear kinetic transport equations: The line source benchmark, Transport Theory and Statistical Physics, 42 (2013), 203-235.  doi: 10.1080/00411450.2014.910226.  Google Scholar

[22]

E. M. Gelbard, Simplified Spherical Harmonics Equations and Their Use in Shielding Problems Technical Report WAPD-T-1182, Bettis Atomic Power Laboratory, 1961. Google Scholar

[23]

C. D. Hauck, High-order entropy-based closures for linear transport in slab geometry, Commun. Math. Sci., 9 (2011), 187-205.  doi: 10.4310/CMS.2011.v9.n1.a9.  Google Scholar

[24]

C. D. HauckM. Frank and E. Olbrant, Perturbed, entropy-based closure for radiative transfer, SIAM Journal on Applied Mathematics, 6 (2013), 557-587.  doi: 10.3934/krm.2013.6.557.  Google Scholar

[25]

H. HenselR. Iza-Teran and N. Siedow, Deterministic model for dose calculation in photon radiotherapy, to appear in Phys. Med. Biol., 51 (2006), 675-693.  doi: 10.1088/0031-9155/51/3/013.  Google Scholar

[26]

J. H. Jeans, The equations of radiative transfer of energy, Monthly Notices Royal Astronomical Society, 78 (1917), 28-36.  doi: 10.1093/mnras/78.1.28.  Google Scholar

[27]

M. Junk, Maximum entropy for reduced moment problems, Math. Meth. Mod. Appl. Sci., 10 (2000), 1001-1025.  doi: 10.1142/S0218202500000513.  Google Scholar

[28]

C. Kelley, Solving Nonlinear Equations with Newton's Method Society for Industrial and Applied Mathematics, 2003. doi: 10.1137/1. 9780898718898.  Google Scholar

[29]

D. S. Kershaw, Flux limiting nature's own way: A new method for numerical solution of the transport equation, http://www.osti.gov/bridge/product.biblio.jsp?osti_id=104974. Google Scholar

[30]

C. J. Knight and A. C. R. Newbery, Trigonometric and Gaussian quadrature, Mathematics of Computation, 24 (1970), 575-581.  doi: 10.1090/S0025-5718-1970-0275672-4.  Google Scholar

[31]

V. I. Lebedev and D. N. Laikov, A quadrature formula for the sphere of the 131st algebraic order of accuracy, in Doklady. Mathematics, vol. 59, MAIK Nauka/Interperiodica, 1999,477– 481. Google Scholar

[32]

C. D. Levermore, Relating eddington factors to flux limiters, Journal of Quantitative Spectroscopy and Radiative Transfer, 31 (1984), 149-160.  doi: 10.1016/0022-4073(84)90112-2.  Google Scholar

[33]

C. D. Levermore, Moment closure hierarchies for kinetic theories, Journal of Statistical Physics, 83 (1996), 1021-1065.  doi: 10.1007/BF02179552.  Google Scholar

[34]

W. R. Martin, The application of the finite element method to the neutron transport equation, 1–232. Google Scholar

[35]

G. N. Minerbo, Maximum entropy Eddington factors, J. Quant. Spectrosc. Radiat. Transfer, 20 (1978), 541-545.  doi: 10.1016/0022-4073(78)90024-9.  Google Scholar

[36]

P. Monreal, Moment Realizability and Kershaw Closures in Radiative Transfer PhD thesis, TU Aachen, 2012. Google Scholar

[37]

P. Monreal and M. Frank, Higher order minimum entropy approximations in radiative transfer, arXiv preprint, arXiv: 0812.3063, 1–18, URL http://arxiv.org/abs/0812.3063. Google Scholar

[38]

G. C. Pomraning, The Fokker-Planck operator as an asymptotic limit, Math. Mod. Meth. Appl. Sci., 2 (1992), 21-36.  doi: 10.1142/S021820259200003X.  Google Scholar

[39]

A. Roth, Numerical Schemes for Kinetic Equations with Applications to Fibre Lay-Down and Interacting Particles Verlag Dr. Hut, 2014. Google Scholar

[40]

A. RothA. KlarB. Simeon and E. Zharovsky, A semi-lagrangian method for 3-d fokker planck equations for stochastic dynamical systems on the sphere, Journal of Scientific Computing, 61 (2014), 513-532.  doi: 10.1007/s10915-014-9835-z.  Google Scholar

[41]

F. Schneider, First-order quarter-and mixed-moment realizability theory and Kershaw closures for a Fokker-Planck equation in two space dimensions: Code 2016. doi: 10.5281/zenodo.48753.  Google Scholar

[42]

F. Schneider, Implicit-explicit, realizability-preserving first-order scheme for moment models with Lipschitz-continuous source terms, arXiv preprint, http://arxiv.org/abs/1611.01314. Google Scholar

[43]

F. Schneider, Kershaw closures for linear transport equations in slab geometry Ⅰ: Model derivation, Journal of Computational Physics, 322 (2016), 905-919.  doi: 10.1016/j.jcp.2016.02.080.  Google Scholar

[44]

F. Schneider, Moment Models in Radiation Transport Equations Dr. Hut Verlag, 2016. Google Scholar

[45]

F. SchneiderG. W. AlldredgeM. Frank and A. Klar, Higher order mixed-moment approximations for the Fokker--Planck equation in one space dimension, SIAM Journal on Applied Mathematics, 74 (2014), 1087-1114.  doi: 10.1137/130934210.  Google Scholar

[46]

F. SchneiderG. W. Alldredge and J. Kall, A realizability-preserving high-order kinetic scheme using WENO reconstruction for entropy-based moment closures of linear kinetic equations in slab geometry, Kinetic and Related Models, 9 (2016), 193-215.  doi: 10.3934/krm.2016.9.193.  Google Scholar

[47]

B. Seibold and M. Frank, StaRMAP—A Second Order Staggered Grid Method for Spherical Harmonics Moment Equations of Radiative Transfer, ACM Transactions on Mathematical Software, 41 (2014), 1-28.  doi: 10.1145/2590808.  Google Scholar

[48]

H. Weyl, Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung), Mathematische Annalen, 71 (1912), 441-479.  doi: 10.1007/BF01456804.  Google Scholar

show all references

References:
[1]

G. W. AlldredgeC. D. HauckD. P. O'Leary and A. L. Tits, Adaptive change of basis in entropy-based moment closures for linear kinetic equations, Journal of Computational Physics, 258 (2014), 489-508.  doi: 10.1016/j.jcp.2013.10.049.  Google Scholar

[2]

G. W. AlldredgeC. D. Hauck and A. L. Tits, High-Order Entropy-Based Closures for Linear Transport in Slab Geometry Ⅱ: A Computational Study of the Optimization Problem, SIAM Journal on Scientific Computing, 34 (2012), B361-B391.  doi: 10.1137/11084772X.  Google Scholar

[3]

G. W. Alldredge and F. Schneider, A realizability-preserving discontinuous Galerkin scheme for entropy-based moment closures for linear kinetic equations in one space dimension, Journal of Computational Physics, 295 (2015), 665-684.  doi: 10.1016/j.jcp.2015.04.034.  Google Scholar

[4]

U. AscherS. Ruuth and R. Spiteri, Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations, Applied Numerical Mathematics, 25 (1997), 151-167.  doi: 10.1016/S0168-9274(97)00056-1.  Google Scholar

[5]

G. I. Bell and S. Glasstone, Nuclear Reactor Theory Technical report, Division of Technical Information, US Atomic Energy Commission, 1970. Google Scholar

[6]

M. A. BlancoM. Flórez and M. Bermejo, Evaluation of the rotation matrices in the basis of real spherical harmonics, Journal of Molecular Structure, 419 (1997), 19-27.  doi: 10.1016/S0166-1280(97)00185-1.  Google Scholar

[7]

T. A. Brunner and J. P. Holloway, One-dimensional Riemann solvers and the maximum entropy closure, Journal of Quantitative Spectroscopy and Radiative Transfer, 69 (2001), 543-566.  doi: 10.1016/S0022-4073(00)00099-6.  Google Scholar

[8]

T. A. Brunner and J. P. Holloway, Two-dimensional time dependent Riemann solvers for neutron transport, Journal of Computational Physics, 210 (2005), 386-399.  doi: 10.1016/j.jcp.2005.04.011.  Google Scholar

[9]

J. A. CarrilloA. Klar and A. Roth, Single to double mill small noise transition via semi-lagrangian finite volume methods, Commun. Math. Sci., 14 (2016), 1111-1136.  doi: 10.4310/CMS.2016.v14.n4.a12.  Google Scholar

[10]

R. E. R. Curto and L. A. Fialkow, Recursiveness, positivity, and truncated moment problems, Houston J. Math, 17 (1991), 603–635, URL https://www.math.uh.edu/~hjm/v017n4/ 0603CURTO.pdf  Google Scholar

[11]

B. Dubroca and J.-L. Feugeas, Entropic moment closure hierarchy for the radiative transfer equation, C. R. Acad. Sci. Paris Ser. I, 329 (1999), 915-920.  doi: 10.1016/S0764-4442(00)87499-6.  Google Scholar

[12]

B. Dubroca and A. Klar, Half-moment closure for radiative transfer equations, Journal of Computational Physics, 180 (2002), 584-596.  doi: 10.1006/jcph.2002.7106.  Google Scholar

[13]

A. S. Eddington, The Internal Constitution of the Stars Dover, 1926. Google Scholar

[14]

A. Ern and J. L. Guermond, Theory and Practice of Finite Elements Applied Mathematical Sciences, Springer New York, 2004, https://books.google.de/books?id=CCjm79FbJbcC. doi: 10.1007/978-1-4757-4355-5.  Google Scholar

[15]

G. D. Fies and M. Vianello, Trigonometric Gaussian quadrature on subintervals of the period, Electronic Transactions on Numerical Analysis, 39 (2012), 102–112, URL http://www.emis. ams.org/journals/ETNA/vol.39.2012/pp102-112.dir/pp102-112.pdf. Google Scholar

[16]

G. D. Fies and M. Vianello, Trigonometric Gaussian quadrature on subintervals of the period, Electronic Transactions on Numerical Analysis, 39 (2012), 102-112.   Google Scholar

[17]

M. Frank, Partial moment entropy approximation to radiative heat transfer, Pamm, 5 (2005), 659-660.  doi: 10.1002/pamm.200510306.  Google Scholar

[18]

M. FrankB. Dubroca and A. Klar, Partial moment entropy approximation to radiative heat transfer, Journal of Computational Physics, 218 (2006), 1-18.  doi: 10.1016/j.jcp.2006.01.038.  Google Scholar

[19]

M. FrankH. Hensel and A. Klar, A fast and accurate moment method for the Fokker-Planck equation and applications to electron radiotherapy, SIAM Journal on Applied Mathematics, 67 (2007), 582-603.  doi: 10.1137/06065547X.  Google Scholar

[20]

W. Fulton, Eigenvalues of sums of Hermitian matrices, Séminaire Bourbaki, 40 (1998), 255-269.   Google Scholar

[21]

C. K. Garrett and C. D. Hauck, A comparison of moment closures for linear kinetic transport equations: The line source benchmark, Transport Theory and Statistical Physics, 42 (2013), 203-235.  doi: 10.1080/00411450.2014.910226.  Google Scholar

[22]

E. M. Gelbard, Simplified Spherical Harmonics Equations and Their Use in Shielding Problems Technical Report WAPD-T-1182, Bettis Atomic Power Laboratory, 1961. Google Scholar

[23]

C. D. Hauck, High-order entropy-based closures for linear transport in slab geometry, Commun. Math. Sci., 9 (2011), 187-205.  doi: 10.4310/CMS.2011.v9.n1.a9.  Google Scholar

[24]

C. D. HauckM. Frank and E. Olbrant, Perturbed, entropy-based closure for radiative transfer, SIAM Journal on Applied Mathematics, 6 (2013), 557-587.  doi: 10.3934/krm.2013.6.557.  Google Scholar

[25]

H. HenselR. Iza-Teran and N. Siedow, Deterministic model for dose calculation in photon radiotherapy, to appear in Phys. Med. Biol., 51 (2006), 675-693.  doi: 10.1088/0031-9155/51/3/013.  Google Scholar

[26]

J. H. Jeans, The equations of radiative transfer of energy, Monthly Notices Royal Astronomical Society, 78 (1917), 28-36.  doi: 10.1093/mnras/78.1.28.  Google Scholar

[27]

M. Junk, Maximum entropy for reduced moment problems, Math. Meth. Mod. Appl. Sci., 10 (2000), 1001-1025.  doi: 10.1142/S0218202500000513.  Google Scholar

[28]

C. Kelley, Solving Nonlinear Equations with Newton's Method Society for Industrial and Applied Mathematics, 2003. doi: 10.1137/1. 9780898718898.  Google Scholar

[29]

D. S. Kershaw, Flux limiting nature's own way: A new method for numerical solution of the transport equation, http://www.osti.gov/bridge/product.biblio.jsp?osti_id=104974. Google Scholar

[30]

C. J. Knight and A. C. R. Newbery, Trigonometric and Gaussian quadrature, Mathematics of Computation, 24 (1970), 575-581.  doi: 10.1090/S0025-5718-1970-0275672-4.  Google Scholar

[31]

V. I. Lebedev and D. N. Laikov, A quadrature formula for the sphere of the 131st algebraic order of accuracy, in Doklady. Mathematics, vol. 59, MAIK Nauka/Interperiodica, 1999,477– 481. Google Scholar

[32]

C. D. Levermore, Relating eddington factors to flux limiters, Journal of Quantitative Spectroscopy and Radiative Transfer, 31 (1984), 149-160.  doi: 10.1016/0022-4073(84)90112-2.  Google Scholar

[33]

C. D. Levermore, Moment closure hierarchies for kinetic theories, Journal of Statistical Physics, 83 (1996), 1021-1065.  doi: 10.1007/BF02179552.  Google Scholar

[34]

W. R. Martin, The application of the finite element method to the neutron transport equation, 1–232. Google Scholar

[35]

G. N. Minerbo, Maximum entropy Eddington factors, J. Quant. Spectrosc. Radiat. Transfer, 20 (1978), 541-545.  doi: 10.1016/0022-4073(78)90024-9.  Google Scholar

[36]

P. Monreal, Moment Realizability and Kershaw Closures in Radiative Transfer PhD thesis, TU Aachen, 2012. Google Scholar

[37]

P. Monreal and M. Frank, Higher order minimum entropy approximations in radiative transfer, arXiv preprint, arXiv: 0812.3063, 1–18, URL http://arxiv.org/abs/0812.3063. Google Scholar

[38]

G. C. Pomraning, The Fokker-Planck operator as an asymptotic limit, Math. Mod. Meth. Appl. Sci., 2 (1992), 21-36.  doi: 10.1142/S021820259200003X.  Google Scholar

[39]

A. Roth, Numerical Schemes for Kinetic Equations with Applications to Fibre Lay-Down and Interacting Particles Verlag Dr. Hut, 2014. Google Scholar

[40]

A. RothA. KlarB. Simeon and E. Zharovsky, A semi-lagrangian method for 3-d fokker planck equations for stochastic dynamical systems on the sphere, Journal of Scientific Computing, 61 (2014), 513-532.  doi: 10.1007/s10915-014-9835-z.  Google Scholar

[41]

F. Schneider, First-order quarter-and mixed-moment realizability theory and Kershaw closures for a Fokker-Planck equation in two space dimensions: Code 2016. doi: 10.5281/zenodo.48753.  Google Scholar

[42]

F. Schneider, Implicit-explicit, realizability-preserving first-order scheme for moment models with Lipschitz-continuous source terms, arXiv preprint, http://arxiv.org/abs/1611.01314. Google Scholar

[43]

F. Schneider, Kershaw closures for linear transport equations in slab geometry Ⅰ: Model derivation, Journal of Computational Physics, 322 (2016), 905-919.  doi: 10.1016/j.jcp.2016.02.080.  Google Scholar

[44]

F. Schneider, Moment Models in Radiation Transport Equations Dr. Hut Verlag, 2016. Google Scholar

[45]

F. SchneiderG. W. AlldredgeM. Frank and A. Klar, Higher order mixed-moment approximations for the Fokker--Planck equation in one space dimension, SIAM Journal on Applied Mathematics, 74 (2014), 1087-1114.  doi: 10.1137/130934210.  Google Scholar

[46]

F. SchneiderG. W. Alldredge and J. Kall, A realizability-preserving high-order kinetic scheme using WENO reconstruction for entropy-based moment closures of linear kinetic equations in slab geometry, Kinetic and Related Models, 9 (2016), 193-215.  doi: 10.3934/krm.2016.9.193.  Google Scholar

[47]

B. Seibold and M. Frank, StaRMAP—A Second Order Staggered Grid Method for Spherical Harmonics Moment Equations of Radiative Transfer, ACM Transactions on Mathematical Software, 41 (2014), 1-28.  doi: 10.1145/2590808.  Google Scholar

[48]

H. Weyl, Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung), Mathematische Annalen, 71 (1912), 441-479.  doi: 10.1007/BF01456804.  Google Scholar

Figure 1.  Interpolation between two realizability boundaries in the projected three-space $(\phi _{\mathcal{S}_x^ + }^{\left( {1,0} \right)},\phi _{\mathcal{S}_x^ - }^{\left( {1,0} \right)},\phi _{\mathcal{S}_y^ + }^{\left( {0,1} \right)})$ along an isoline of $\mathcal{N}\left( {{\phi ^{\left| 1 \right|}}} \right)$. The realizable set with respect to the quadrant ${\mathcal{S}_{ - + }}$ is plotted in grey
Figure 2.  The eigenvector ${\bf{v}}_1({\phi _{{\mathcal{S}_{ + + }}}})$ (blue arrows) of the ${\rm{Q}}{{\rm{M}}_1}$ second moment $\phi _{{\mathcal{S}_{ + + }}}^{\left| 2 \right|}$ (Figure (a)) and its minimal deviation from $\phi _{{\mathcal{S}_{+ +}}}^{\left| 1 \right|}$ in degrees (Figure (b))
Figure 3.  Components of the $Q{K_1}$ second moment on ${\mathcal{S}_{ + + }}$
Figure 4.  Deviation of $\phi _{{\mathcal{S}_{ + + }}}^{\left( {2,0} \right)}$ and $\phi _{{\mathcal{S}_{ + + }}}^{\left( {2,0} \right)}$ for ${\rm{Q}}{{\rm{M}}_1}$ and $Q{K_1}$, respectively
Figure 5.  Eigenvalues of the flux Jacobian in $x$-direction ${\bf{F}}_1^\prime$
Figure 6.  Minimal and maximal distance of adjacent eigenvalues of the flux Jacobian ${\bf{F}}_1^\prime$
Figure 7.  Visualization of the coefficients $\rho _{\iota \pm}$ for the example $\phi _{{\mathcal{S}_{+ +}}}^{\left| 1 \right|}=\left(0.4,0.6\right)^T$. The length of the arrows represent the maximal value for the respective coefficient
Figure 8.  Second moment $\phi _{\mathcal{S}_y^ + }^{\left( {0,2} \right)}$ for the ${\rm{M}}{{\rm{M}}_1}$ and Kershaw model for $\phi _{\mathcal{S}_y^ + }^{\left( {0,1} \right)} = -\phi _{\mathcal{S}_y^ - }^{\left( {0,1} \right)} = \frac14$
Figure 9.  Local particle density ${u^{\left( {0,0} \right)}}$ of some models at $t = 1.2$ in the two-beams test case
Figure 10.  Local particle density ${u^{\left( {0,0} \right)}}$ at $t = 1.2$ in the opposing two-beams test case
Figure 11.  Local particle density ${u^{\left( {0,0} \right)}}$ at $t = 1.2$ in the rotated two-beams test case
Figure 12.  Local particle density ${u^{\left( {0,0} \right)}}$ of some models at $t = 1$ in the source-beam test case
Figure 13.  Local particle density ${u^{\left( {0,0} \right)}}$ of some models at $t = 2.5$ in the source-beam test case
Figure 14.  Horizontal cut ($y = 1.5$) of the local particle density ${u^{\left( {0,0} \right)}}$ of some models at $t = 1$ and $t = 2.5$, respectively, in the source-beam test case
Figure 15.  Local particle density ${u^{\left( {0,0} \right)}}$ of some models at $t = 0.45$ in the line-source test case
Figure 16.  Local particle density ${u^{\left( {0,0} \right)}}$ of some models at $t = 0.45$ in the line-source test case, horizontal and diagonal cuts
Table 1.  Absolute and relative running times (wrt. ${\rm{M}}{{\rm{M}}_1}$) of some models for the source-beam test
Model $n$ Abs. runtime [s] Rel. runtime
${\rm{M}}{{\rm{M}}_1}$ 5 1.305e+05 3.885e-01
${\rm{M}}{{\rm{M}}_2}$ 13 3.359e+05 1.0
${\rm{M}}{{\rm{K}}_1}$ 5 3.408e+01 1.015e-04
${{\rm{M}}_1}$ 3 9.418e+04 2.804e-01
${{\rm{M}}_2}$ 6 2.269e+05 6.757e-01
$Q{K_1}$ 12 5.309e+01 1.581e-04
Model $n$ Abs. runtime [s] Rel. runtime
${\rm{M}}{{\rm{M}}_1}$ 5 1.305e+05 3.885e-01
${\rm{M}}{{\rm{M}}_2}$ 13 3.359e+05 1.0
${\rm{M}}{{\rm{K}}_1}$ 5 3.408e+01 1.015e-04
${{\rm{M}}_1}$ 3 9.418e+04 2.804e-01
${{\rm{M}}_2}$ 6 2.269e+05 6.757e-01
$Q{K_1}$ 12 5.309e+01 1.581e-04
Table 2.  Absolute and relative running times (wrt. ${\rm{M}}{{\rm{M}}_1}$) of some models for the source-beam test.
Model $n$ Abs. runtime [s] Rel. runtime
${\rm{M}}{{\rm{M}}_1}$ 5 2.489e+05 1.0
${\rm{M}}{{\rm{M}}_2}$ 13 9.526e+04 3.828e-01
${\rm{M}}{{\rm{K}}_1}$ poly 5 1.535e+02 6.169e-04
${{\rm{M}}_1}$ 3 6.639e+04 2.668e-01
${{\rm{M}}_2}$ 6 1.189e+05 4.777e-01
${{\rm{M}}_3}$ 12 2.232e+05 8.967e-01
Model $n$ Abs. runtime [s] Rel. runtime
${\rm{M}}{{\rm{M}}_1}$ 5 2.489e+05 1.0
${\rm{M}}{{\rm{M}}_2}$ 13 9.526e+04 3.828e-01
${\rm{M}}{{\rm{K}}_1}$ poly 5 1.535e+02 6.169e-04
${{\rm{M}}_1}$ 3 6.639e+04 2.668e-01
${{\rm{M}}_2}$ 6 1.189e+05 4.777e-01
${{\rm{M}}_3}$ 12 2.232e+05 8.967e-01
Table 3.  Absolute and relative running times (wrt. ${\rm{M}}{{\rm{M}}_3}$) of some models for the line-source test
Model $n$ Abs. runtime [s] Rel. runtime
${\rm{M}}{{\rm{M}}_1}$ 5 1.638e+05 2.091e-01
${\rm{M}}{{\rm{M}}_2}$ 13 3.491e+05 4.456e-01
${\rm{M}}{{\rm{M}}_3}$ 25 7.834e+05 1.0
${\rm{M}}{{\rm{K}}_1}$ poly 5 1.888e+02 2.409e-04
${\rm{M}}{{\rm{K}}_1}$ 5 2.898e+04 3.700e-02
${{\rm{M}}_1}$ 3 5.458e+04 6.968e-02
${{\rm{M}}_2}$ 6 9.696e+04 1.238e-01
${{\rm{M}}_3}$ 10 1.823e+05 2.327e-01
Model $n$ Abs. runtime [s] Rel. runtime
${\rm{M}}{{\rm{M}}_1}$ 5 1.638e+05 2.091e-01
${\rm{M}}{{\rm{M}}_2}$ 13 3.491e+05 4.456e-01
${\rm{M}}{{\rm{M}}_3}$ 25 7.834e+05 1.0
${\rm{M}}{{\rm{K}}_1}$ poly 5 1.888e+02 2.409e-04
${\rm{M}}{{\rm{K}}_1}$ 5 2.898e+04 3.700e-02
${{\rm{M}}_1}$ 3 5.458e+04 6.968e-02
${{\rm{M}}_2}$ 6 9.696e+04 1.238e-01
${{\rm{M}}_3}$ 10 1.823e+05 2.327e-01
[1]

A. M. Micheletti, Angela Pistoia. Multiple eigenvalues of the Laplace-Beltrami operator and deformation of the Riemannian metric. Discrete & Continuous Dynamical Systems - A, 1998, 4 (4) : 709-720. doi: 10.3934/dcds.1998.4.709

[2]

Micol Amar, Roberto Gianni. Laplace-Beltrami operator for the heat conduction in polymer coating of electronic devices. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1739-1756. doi: 10.3934/dcdsb.2018078

[3]

Andrea Bonito, Roland Glowinski. On the nodal set of the eigenfunctions of the Laplace-Beltrami operator for bounded surfaces in $R^3$: A computational approach. Communications on Pure & Applied Analysis, 2014, 13 (5) : 2115-2126. doi: 10.3934/cpaa.2014.13.2115

[4]

Yoshitsugu Kabeya. Eigenvalues of the Laplace-Beltrami operator under the homogeneous Neumann condition on a large zonal domain in the unit sphere. Discrete & Continuous Dynamical Systems - A, 2019, 0 (0) : 0-0. doi: 10.3934/dcds.2020040

[5]

Zbigniew Banach, Wieslaw Larecki. Entropy-based mixed three-moment description of fermionic radiation transport in slab and spherical geometries. Kinetic & Related Models, 2017, 10 (4) : 879-900. doi: 10.3934/krm.2017035

[6]

Josephus Hulshof, Pascal Noble. Travelling waves for a combustion model coupled with hyperbolic radiation moment models. Discrete & Continuous Dynamical Systems - B, 2008, 10 (1) : 73-90. doi: 10.3934/dcdsb.2008.10.73

[7]

Florian Méhats, Olivier Pinaud. A problem of moment realizability in quantum statistical physics. Kinetic & Related Models, 2011, 4 (4) : 1143-1158. doi: 10.3934/krm.2011.4.1143

[8]

Filippo Gazzola. On the moments of solutions to linear parabolic equations involving the biharmonic operator. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3583-3597. doi: 10.3934/dcds.2013.33.3583

[9]

Yong-Jung Kim. A generalization of the moment problem to a complex measure space and an approximation technique using backward moments. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 187-207. doi: 10.3934/dcds.2011.30.187

[10]

T. Hillen. On the $L^2$-moment closure of transport equations: The general case. Discrete & Continuous Dynamical Systems - B, 2005, 5 (2) : 299-318. doi: 10.3934/dcdsb.2005.5.299

[11]

T. Hillen. On the $L^2$-moment closure of transport equations: The Cattaneo approximation. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 961-982. doi: 10.3934/dcdsb.2004.4.961

[12]

John C. Schotland, Vadim A. Markel. Fourier-Laplace structure of the inverse scattering problem for the radiative transport equation. Inverse Problems & Imaging, 2007, 1 (1) : 181-188. doi: 10.3934/ipi.2007.1.181

[13]

Matthias Geissert, Horst Heck, Christof Trunk. $H^{\infty}$-calculus for a system of Laplace operators with mixed order boundary conditions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1259-1275. doi: 10.3934/dcdss.2013.6.1259

[14]

Shingo Takeuchi. Partial flat core properties associated to the $p$-laplace operator. Conference Publications, 2007, 2007 (Special) : 965-973. doi: 10.3934/proc.2007.2007.965

[15]

Florian Schneider, Jochen Kall, Graham Alldredge. A realizability-preserving high-order kinetic scheme using WENO reconstruction for entropy-based moment closures of linear kinetic equations in slab geometry. Kinetic & Related Models, 2016, 9 (1) : 193-215. doi: 10.3934/krm.2016.9.193

[16]

Florian Schneider. Second-order mixed-moment model with differentiable ansatz function in slab geometry. Kinetic & Related Models, 2018, 11 (5) : 1255-1276. doi: 10.3934/krm.2018049

[17]

Guoqing Zhang, Jia-yu Shao, Sanyang Liu. Linking solutions for N-laplace elliptic equations with Hardy-Sobolev operator and indefinite weights. Communications on Pure & Applied Analysis, 2011, 10 (2) : 571-581. doi: 10.3934/cpaa.2011.10.571

[18]

Julián López-Gómez. On the structure of the permanence region for competing species models with general diffusivities and transport effects. Discrete & Continuous Dynamical Systems - A, 1996, 2 (4) : 525-542. doi: 10.3934/dcds.1996.2.525

[19]

Pengwen Chen, Changfeng Gui. Alpha divergences based mass transport models for image matching problems. Inverse Problems & Imaging, 2011, 5 (3) : 551-590. doi: 10.3934/ipi.2011.5.551

[20]

Martin Burger, Jan-Frederik Pietschmann, Marie-Therese Wolfram. Identification of nonlinearities in transport-diffusion models of crowded motion. Inverse Problems & Imaging, 2013, 7 (4) : 1157-1182. doi: 10.3934/ipi.2013.7.1157

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (13)
  • HTML views (74)
  • Cited by (1)

Other articles
by authors

[Back to Top]