The Cauchy problem of the reduced gravity two and a half layer model in dimension three isconsidered. We obtain the pointwise estimates of the time-asymptotic shape of the solution, which exhibit two kinds of the generalized Huygens' waves. It is a significant different phenomenon from the Navier-Stokes system. Lastly, as a byproduct, we also extend $L^2(\mathbb{R}^3)$-decay rate to $L^p(\mathbb{R}^3)$-decay rate with $p>1$.
Citation: |
H. B. Cui
, L. Yao
and Z. A. Yao
, Global existence and optimal decay rates of solutions to a reduced gravity two and a half layer model, Communications on Pure Applied Analysis, 14 (2015)
, 981-1000.
doi: 10.3934/cpaa.2015.14.981.![]() ![]() ![]() |
|
R. Duan
and C.H. Zhou
, On the compactness of the reduced-gravity two-and-a-half layer equations, J. Diff. Eqns., 252 (2012)
, 3506-3519.
doi: 10.1016/j.jde.2011.12.012.![]() ![]() ![]() |
|
R. J. Duan
, S. Ukai
, T. Yang
and H. J. Zhao
, Optimal convergence rates for the compressible Navier-Stokes equations with potential forces, Mathematical Models and Methods in Applied Sciences, 17 (2007)
, 737-758.
doi: 10.1142/S021820250700208X.![]() ![]() ![]() |
|
R. J. Duan
, H. X. Liu
, S. Ukai
and T. Yang
, Optimal $L^p-L^q$ convergence rates for the compressible Navier-Stokes equations with potential force, J. Diff. Eqns., 238 (2007)
, 220-233.
doi: 10.1142/S021820250700208X.![]() ![]() ![]() |
|
D. Hoff
and K. Zumbrun
, Multi-dimensional diffusion waves for the Navier-Stokes equations of compressible flow, Indiana University Mathematics Journal, 44 (1995)
, 603-676.
doi: 10.1512/iumj.1995.44.2003.![]() ![]() ![]() |
|
D. Hoff
and K. Zumbrun
, Pointwise decay estimates for multidimensional Navier-Stokes diffusion Waves, Z. angew. Math. Phys., 48 (1997)
, 597-614.
doi: 10.1007/s000330050049.![]() ![]() ![]() |
|
F. M. Huang
, J. Li
and A. Matsumura
, Asymptotic stability of combination of viscous contact wave with rarefaction waves for one-dimensional compressible Navier-Stokes system, Arch. Ration. Mech. Anal., 197 (2010)
, 89-116.
doi: 10.1007/s00205-009-0267-0.![]() ![]() ![]() |
|
F. M. Huang
, A. Matsumura
and Z. P. Xin
, Stability of contact discontinuities for the 1-D compressible Navier-Stokes equations, Arch. Ration. Mech. Anal., 179 (2006)
, 55-77.
doi: 10.1007/s00205-005-0380-7.![]() ![]() ![]() |
|
Y. I. Kanel
, Cauchy problem for the equations of gas dynamics with viscosity, Siberian Math. J., 20 (1979)
, 208-218.
![]() ![]() |
|
S. Kawashima,
System of a Hyperbolic-Parabolic Composite Type, with Applications to the Equations of Manetohydrodynamics Ph. D thesis, Kyoto University, Kyoto, 1983.
![]() |
|
S. Kawashima
and A. Matsumura
, Asymptotic stability of traveling wave solutions of systems for one-dimensional gas motion, Comm. Math. Phys., 101 (1985)
, 97-127.
doi: 10.1007/BF01212358.![]() ![]() ![]() |
|
S. Kawashima
and T. Nishida
, Global solutions to the initial value problem for the equations of one dimensional motion of viscous polytropic gases, J. Math. Kyoto Univ., 21 (1981)
, 825-837.
doi: 10.1215/kjm/1250521915.![]() ![]() ![]() |
|
T. Kobayashi
and Y. Shibata
, Decay estimates of solutions for the equations of motion of compressible viscous and heat-conductive gases in an exterior domain in $\mathbb{R}^3$, Commun. Math. Phys., 200 (1999)
, 621-659.
![]() ![]() |
|
H. L. Li
and T. Zhang
, Large time behavior of isentropic compressible Navier-Stokes system in $\mathbb{R}^3$, Mathematical Methods in the Applied Sciences, 34 (2011)
, 670-682.
doi: 10.1002/mma.1391.![]() ![]() ![]() |
|
T. P. Liu
, Pointwise convergence to shock waves for viscous conservation laws, Comm. Pure Appl. Math., 50 (1997)
, 1113-1182.
doi: 10.1002/(SICI)1097-0312(199711)50:11<1113::AID-CPA3>3.0.CO;2-D.![]() ![]() ![]() |
|
T. P. Liu
and S. E. Noh
, Wave propagation for the compressible Navier-Stokes equations, J. Hyperbolic Differ. Eqns., 12 (2015)
, 385-445.
doi: 10.1142/S0219891615500113.![]() ![]() ![]() |
|
T. P. Liu
and W. K. Wang
, The pointwise estimates of diffusion wave for the Navier-Stokes systems in odd multi-dimension, Comm. Math. Phys., 196 (1998)
, 145-173.
doi: 10.1007/s002200050418.![]() ![]() ![]() |
|
T. P. Liu
and Z. P. Xin
, Nonlinear stability of rarefaction waves for compressible Navier-Stokes equations, Comm. Math. Phys., 118 (1988)
, 451-465.
doi: 10.1007/BF01466726.![]() ![]() ![]() |
|
T. P. Liu
and S. H. Yu
, The Green's function and large-time behavior of solutions for one dimensional Boltzmann equation, Comm. Pure. Appl. Math., 57 (2004)
, 1543-1608.
doi: 10.1002/cpa.20011.![]() ![]() ![]() |
|
T. P. Liu
and S. H. Yu
, Initial-boundary value problem for one-dimensional wave solutions of the Boltzmann equation, Commun. Pure Appl. Math., 60 (2007)
, 295-356.
doi: 10.1002/cpa.20172.![]() ![]() ![]() |
|
T. P. Liu
and S. H. Yu
, Green's function of Boltzmann equation, 3-D waves, Bullet. Inst. of Math. Academia Sinica, 1 (2006)
, 1-78.
![]() ![]() |
|
T. P. Liu
and S. H. Yu
, Solving Boltzmann equation, part Ⅰ: Green's function, Bullet. Inst. of Math. Academia Sinica, 6 (2011)
, 115-243.
![]() ![]() |
|
T. P. Liu
and S. H. Yu
, Dirichlet-Neumann Kernel for hyperbolic-dissipative system in half space, Bullet. Inst. of Math. Academia Sinica, 7 (2012)
, 477-543.
![]() ![]() |
|
T. P. Liu
and Y. N. Zeng
, Large time behavior of solutions for general quasilinear hyperbolic-parabolic systems of conservation laws, Amer. Math. Soc., 7125 (1997)
, ⅷ+120 pp.
doi: 10.1090/memo/0599.![]() ![]() ![]() |
|
T. P. Liu
and Y. N. Zeng
, Shock waves in conservation laws with physical viscosity, Mem. Amer. Math. Soc., 7125 (1997)
, ⅷ+120 pp.
doi: 10.1090/memo/1105.![]() ![]() ![]() |
|
A. Matsumura
and T. Nishida
, The initial value problem for the equations of motion of compressible viscous and heat-conductive fluids, Proc. Jpn. Acad. Ser. A, 55 (1979)
, 337-342.
doi: 10.3792/pjaa.55.337.![]() ![]() ![]() |
|
A. Matsumura
and T. Nishida
, The initial value problem for the equations of motion of viscous and heat-conductive gases, J. Math. Kyoto. Univ., 20 (1980)
, 67-104.
doi: 10.1215/kjm/1250522322.![]() ![]() ![]() |
|
M. Okada
and S. Kawashima
, On the equations of one-dimensional motion of compressible viscous fluids, J. Math. Kyoto Univ., 23 (1983)
, 55-71.
doi: 10.1215/kjm/1250521610.![]() ![]() ![]() |
|
S. Ukai
, T. Yang
and S. H. Yu
, Nonlinear boundary layers of the Boltzmann equation. Ⅰ. Existence, Comm. Math. Phys., 236 (2003)
, 373-393.
doi: 10.1007/s00220-003-0822-8.![]() ![]() ![]() |
|
G. K. Vallis,
Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation Cambridge University Press, 2006.
doi: 10.1017/CBO9780511790447.![]() ![]() |
|
W. K. Wang
and Z. G. Wu
, Pointwise estimates of solution for the Navier-Stokes-Poisson equations in multi-dimensions, J. Diff. Eqns., 248 (2010)
, 1617-1636.
doi: 10.1016/j.jde.2010.01.003.![]() ![]() ![]() |
|
W. K. Wang
and T. Yang
, The pointwise estimates of solutions for Euler-Equations with damping in multi-dimensions, J. Diff. Eqns., 173 (2001)
, 410-450.
doi: 10.1006/jdeq.2000.3937.![]() ![]() ![]() |
|
R. Wei
, Y. Li
and Z. A. Yao
, Decay of the solution to a reduced gravity two and a half layer equations, Journal of Mathematical Analysis and Applications, 438 (2016)
, 946-961.
doi: 10.1016/j.jmaa.2016.01.081.![]() ![]() ![]() |
|
Z. G. Wu
and W. K. Wang
, Pointwise estimates of solution for non-isentropic Navier-Stokes-Poisson equations in multi-dimensions, Acta Math. Sci., 32 (2012)
, 1681-1702.
doi: 10.1016/S0252-9602(12)60134-9.![]() ![]() ![]() |
|
Z. G. Wu
and W. K. Wang
, Refined pointwise estimates for the Navier-Stokes-Poisson equations, Analysis and Applications, 14 (2016)
, 739-762.
doi: 10.1142/S0219530515500153.![]() ![]() ![]() |
|
Z. G. Wu
and W. K. Wang
, Large time behavior and pointwise estimates for compressible Euler equations with damping, Science China Mathematics, 58 (2015)
, 1397-1414.
doi: 10.1007/s11425-015-5013-5.![]() ![]() ![]() |
|
L. Yao
, Z. L. Li
and W. J. Wang
, Existence of spherically symmetric solutions for a reduced gravity two-and-a-half layer system, J. Diff. Eqns., 261 (2016)
, 1637-1668.
doi: 10.1016/j.jde.2016.04.012.![]() ![]() ![]() |
|
S. H. Yu
, Nonlinear wave propagation over a Boltzmann shock profile, J. Amer. Math. Soc., 23 (2010)
, 1040-1118.
doi: 10.1090/S0894-0347-2010-00671-6.![]() ![]() ![]() |
|
Y. N. Zeng
, $L^1$ asymptotic behavior of compressible isentropic viscous 1-D flow, Commun. Pure Appl. Math., 47 (1994)
, 1053-1082.
doi: 10.1002/cpa.3160470804.![]() ![]() ![]() |
|
Y. N. Zeng
, Thermal Non-equilibrium flows in three space dimensions, Arch. Rational Mech. Anal., 219 (2016)
, 27-87.
doi: 10.1007/s00205-015-0892-8.![]() ![]() ![]() |