December  2017, 10(4): 1255-1257. doi: 10.3934/krm.2017048

L resolvent bounds for steady Boltzmann's Equation

Indiana University Bloomington, IN 47405, USA

Received  November 2016 Revised  January 2017 Published  March 2017

Fund Project: The author is supported by NSF grant DMS-0300487.

We derive lower bounds on the resolvent operator for the linearized steady Boltzmann equation over weighted $L^\infty$Banach spaces in velocity, comparable to those derived by Pogan & Zumbrun in an analogous weighted $L^2$ Hilbert space setting.These show in particular that the operator norm of the resolvent kernel is unbounded in $L^p(\mathbb{R})$ for all $1<p \leq \infty$, resolving an apparent discrepancy in behavior between the two settings suggested by previous work.

Citation: Kevin Zumbrun. L resolvent bounds for steady Boltzmann's Equation. Kinetic & Related Models, 2017, 10 (4) : 1255-1257. doi: 10.3934/krm.2017048
References:
[1]

H. Grad, Asymptotic theory of the Boltzmann equation. Ⅱ, in Rarefied Gas Dynamics (Proc. 3rd Internat. Sympos. , Palais de l'UNESCO, Paris, 1962), , Academic Press, (1963), 26–59  Google Scholar

[2]

T.-P. Liu and S.-H. Yu, Invariant manifolds for steady Boltzmann flows and applications, Arch. Rational Mech. Anal., 209 (2013), 869-997.  doi: 10.1007/s00205-013-0640-x.  Google Scholar

[3]

Q. Métivier and K. Zumbrun, Existence and sharp localization in velocity of small-amplitude Boltzmann shocks, Kinet. Relat. Models, 2 (2009), 667-705.  doi: 10.3934/krm.2009.2.667.  Google Scholar

[4]

A. Pogan and K. Zumbrun, Stable manifolds for a class of degenerate evolution equations and exponential decay of kinetic shocks, preprint, https://arxiv.org/pdf/1607.03028.pdf. Google Scholar

show all references

References:
[1]

H. Grad, Asymptotic theory of the Boltzmann equation. Ⅱ, in Rarefied Gas Dynamics (Proc. 3rd Internat. Sympos. , Palais de l'UNESCO, Paris, 1962), , Academic Press, (1963), 26–59  Google Scholar

[2]

T.-P. Liu and S.-H. Yu, Invariant manifolds for steady Boltzmann flows and applications, Arch. Rational Mech. Anal., 209 (2013), 869-997.  doi: 10.1007/s00205-013-0640-x.  Google Scholar

[3]

Q. Métivier and K. Zumbrun, Existence and sharp localization in velocity of small-amplitude Boltzmann shocks, Kinet. Relat. Models, 2 (2009), 667-705.  doi: 10.3934/krm.2009.2.667.  Google Scholar

[4]

A. Pogan and K. Zumbrun, Stable manifolds for a class of degenerate evolution equations and exponential decay of kinetic shocks, preprint, https://arxiv.org/pdf/1607.03028.pdf. Google Scholar

[1]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[2]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[3]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[4]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[5]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[6]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[7]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[8]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[9]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[10]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[11]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[12]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[13]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[14]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[15]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[16]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[17]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[18]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[19]

Teresa D'Aprile. Bubbling solutions for the Liouville equation around a quantized singularity in symmetric domains. Communications on Pure & Applied Analysis, 2021, 20 (1) : 159-191. doi: 10.3934/cpaa.2020262

[20]

Tomáš Roubíček. Cahn-Hilliard equation with capillarity in actual deforming configurations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 41-55. doi: 10.3934/dcdss.2020303

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (96)
  • HTML views (126)
  • Cited by (3)

Other articles
by authors

[Back to Top]